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ABSTRACT

In this communication, we are interested in blind
sources separation methods based on joint-diagonaliza-
tion of combined sets of “spatial ¢-f distributions” ma-
trices (STFD). Our aim is to perform sources separa-
tion with no pre-whitening, thanks to the non-orthogo-
nal joint-diagonalization procedure recently proposed
in [7]. We also show how such an approach makes it
possible to give up the classical hypothesis of indepen-
dence of sources. The problem is, in fact, reformulated
in order to treat the case of even correlated sources.
Computer simulations are provided in order to illus-
trate the effectiveness of the proposed approach and to
evaluate its advantages with regard to other techniques.

1. INTRODUCTION

During the past decade, many “blindly” operating ap-
proaches have treated of a model called sources sepa-
ration. In such a problem, the coupling channels are
assumed to have unknown constant gains, the aim be-
ing to recover the inputs from the only outputs, without
the explicit use of the unobservable sources (supposed
independent) and without any model of the mixture
matrix. Many solutions have been proposed to solve
this problem (contrasts functions [5], maximum like-
lihood functions...), among which the one we are in-
terested in and that was recently introduced in [1] [2].
This method plays upon the joint-diagonalization (JD)
of a combined set of “spatial quadratic t-f distribu-
tions” (SQTFD) matrices. In [3], we have introduced
new criteria of automatic selection of the ¢-f points to
use in the building of matrices sets to JD and/or to
joint anti-diagonalize (JAD). In this communication,
our aim is to show that blind sources separation based
on SQTFD can be performed without the classical pre-
liminary operation of whitening of the observations. To
that aim, we generalize one of the selection criteria we
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have proposed in [3] to make it suitable for the case
of non pre-whitened data (the trace of SQTFD cannot
be used any more, that is why a 2D-filtering operation
is now introduced). The classical joint-diagonalization
procedure is then replaced by the non-orthogonal one
proposed by A. Yeredor in [7]. The main advantage of
this approach is to allow to separate even correlated
sources. Finally, computer simulations are provided
in order to evaluate the effectiveness of the proposed
method.

2. PROBLEM STATEMENT

2.1. Model & Assumptions

We consider the blind sources separation problem, as-
suming that N sources signals are received on an an-
tenna of the same number N of sensors. In matrix and
vector notations, the input/output relationship of the
mixing system is then given, in the noiseless case, by:
x(t) = As(t), with A the N x N instantaneous mixing
matrix (assumed invertible), x(t) = [x1(¢), ..., zn (t)]T
the N x 1 observations vector (superscript denot-
ing transposition), s(t) = [s1(t), ..., sx(£)]T the N x 1
sources vector. In our case, the sources s;(t), i =
1,..., N are supposed to be deterministic signals. Their
correlation matrix Cs(7) = (Cs,s, (7)) is defined com-
ponent-wise as: Cs,s; (1) = (si(t)s}(t — 7)) Vi, j, where
(.) stands for a temporal mean over ¢. Its expression de-
pends on the class of considered deterministic signals.
In the case of finite (mean) power signals the tempo-
ral mean is defined according to (z(t)) = limy_ 4
T f Téjz t)dt. To deal with the important practical
case of ﬁnlte energy time limited signals, we consider
that they correspond to one period of a periodic (finite

power) signal In this latter case the mean can be writ-
B T/2
ten as =7 1p?

riod of ( ) correspondlng to the time duration of the

t)dt, where T is now the pe-
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considered time limited signal. In the following, two
assumptions are made: the structure of the sources is
such that the localization of their signatures in the ¢-f
plane is different and both the mixing matrix and the
sources are real. The problem of blind sources separa-
tion is then to identify the mixing matrix in order to
restore the unknown sources.

2.2. Problem indeterminacies

It is well known that the sources separation problem
can be solved only up to a diagonal matrix D (cor-
responding to arbitrary attenuations for the restored
sources), and a permutation matrix P (corresponding
to an arbitrary order of restitution), that is why the
unit power assumption on sources can be done with-
out loss of generality (consequently, for decorrelated
sources it is assumed that Cs(0) = Iy).

2.3. Spatial Time-Frequency Representations

A Bilinear Transform (BTr), applied to a couple (x;, ;)
and denoted D, ;, is defined as follows [6]:

BTr
(xivxj) — D:vi:vj

Dy (t,v; R) =

/ 2:(0)2(6))R(6, 0/ t,v) 00!
R2

A Quadratic Transform (QTr) associated to a signal
x;(t), is the restriction to ;(t) = z;(t) of a BTr applied
to a couple (z;,z;) [6]. In the case of a vectorial sig-
nal x(t) = [21(t),..., 2 (t)]T, the following quadratic
transform is spatial:

Doo(t,v) = [rz(0)x™ (0))R(0,0';t,v)d0d0" with R,
the kernel of the transform. Terms on the diagonal of
Dy (t,v) are auto-terms (or quadratic terms D, )
whereas other terms are inter-terms (or bilinear terms
D, .,). In the case of sources separation, it is inter-
esting to take advantage of the Hermitian symmetry
property of bilinear transforms. A BTr exhibits hermi-
tian symmetry if it satisfies Dy, (t,v) = D} .. (t,v).
It also involves the reality of the associated QTr.

3. SOURCES SEPARATION WITH SQTFD

3.1. Correlated sources: effect of pre-whitening

In the context of correlated sources, their correlation
matrix is no more diagonal for 7 = 0 but writes Cs(0) =
Iy + ey, where Iy is the N x N identity matrix
and ey the symmetric matrix of inter-correlations be-
tween sources, having zeros on its diagonal. By Sin-
gular Value Decomposition (SVD), the mixing matrix

A can be decomposed [4] as A = VA?U with V and

U, NxN orthogonal matrices and A a NxN diago-
nal matrix. C,(0) = AC,(0)AT = A(Iy +en)AT=
V(A + AzUeyU AV = VMV where M =
A + A*UeyUTA? is also a symmetric matrix (in
the case of decorrelated sources M = A). Its eigen-
value decomposition writes: M = CDC? with C an
orthogonal matrix and D a diagonal matrix. Finally,
C.(0) = VCDCT VT which corresponds to its eigen-
value decomposition since VC' is an orthogonal ma-
trix. The whitening matrix is then defined as W =
D~ '2CTVv 7 leading to whitened observations: z(t) =
WAs(t) = D™V2CTAY?Us(t) = Es(t). One can
check that C,(0) = Iy, however, E is no more an
orthogonal matrix since:

ETE =UTAYV2CcD'CT AYV?U = C,(0)7! # Iy

—1

and the eigen-decomposition of C,(0) does not allow
any more to estimate two of the three matrices involved
in the decomposition of the mixing matrix. In the case
of decorrelated sources, on the contrary, the whitening
matrix is simply defined as W = ATV2YT leading to
z(t) =Us(t).

3.2. Sources separation without pre-whitening

Under our assumptions, the SQTFD of the observed
signals writes Dgg(t,v) = ADg(t, V)AT with
Diya, (t,v) = 320 — 1 akiap; Ds,s (t,v) and A = (ai;)-

3.2.1. Building of the set of matrices to be JD

The real part R(.) and the imaginary part 3(.) of auto-
terms D, ., and cross-terms D,, . are equal to:

N
m(Dxpwp(t:V)) = ZaigDsgsg(t’V)
g=1

N
-+ 22 Z apgaph%(DsgSh (t7 V))

h=1g=1(g<h)

S(Dazpa, (t,v)) = 0
N

§R(Dﬂ-?cp(t:l’)) = ZapgangSgsg(th)
g=1

I
M=
M =

g(Dﬂ%Ip(tvy)) apgaqhg(DSgSh(t7 V))

The purpose is to determine which ¢-f points corre-
spond to sources auto-terms only (Ds,s, terms only
and no Dg, ), because in such ¢-f points the SQTFD
should be diagonal. The same kind of ideas as those de-
veloped in [3] can then be used, except that it is worked
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on SQTFD matrices related to the observations instead
of those of the pre-whitened observations. Moreover,
the JD procedure used, in [3], on the resulting set to
identify the orthogonal matrix U, will be replaced by
the non-orthogonal JD procedure proposed by [7].

Two thresholds S; and S, are defined. They happen
to be small positive constants. Using the two previous
equations, one can notice that when at least one signal
is present, without any sources cross-terms (no D)
then the absolute value of the imaginary part of the
SQTEFD is inferior to So whereas the absolute value of
its real part is superior to S7. Note that such a decision
criterium is not restrictive enough, in fact a problem
may occur when interferences between sources do exist
(their real parts are not null) but with null imaginary
parts (in such ¢-f points, if there are sources cross-
terms only, the corresponding SQTFD should be joint
anti-diagonalized, and if there are both sources auto
and cross-terms, nothing should be done). To eliminate
this ambiguity, an additional condition is introduced
thanks to a Sobel 2D-filter applied on each imaginary
parts of the cross-terms of the SQTFDs, whose effect
is to differentiate the ¢-f images. A third threshold
Ss is introduced: if the derivative in this ¢-f point is
smaller than S3, there is no sources interferences but
only sources auto-terms and the corresponding SQTFD
has to be JD, in the other case nothing is done. The
resulting decision algorithm is displayed on Fig.1.

3.2.2. Procedure of non-orthogonal JD

In [7], A. Yeredor demonstrates how to JD a set of non-
orthogonal matrices according to a least square crite-
rion. Two distinct algorithms have been developed to
consider either the case of hermitian or symmetrical
matrices. They follow the same stages. First, a set .4 of
K non-orthogonal matrices A, Ay,..., Ax € CVXN
is considered. The approximate JD problem consists
in searching a diagonalizing matrix B € CN*V and K
associated diagonal matrices A1, Ao, ..., Ax € CVXN
such that Crg(B, A1, Ag, ..., Ax)= S0 wi| Ay —
BA,B"|% is minimized. wi,ws,...,wx € R’ are
positive weights, ||-||% is the square Frobenius norm and
H is either the transpose or the conjugate transpose.
For the minimization of this weighted least-square cri-
terion with respect to (w.r.t.) a general diagonalizing
matrix, an iterative alternating-direction algorithm is
proposed:

e The "Alternating Columns" phase minimizes Cr,g(B,
A, Ag, ..., Ak) wrt. a selected column of B while
keeping its other columns, as well as Aj, Aq,..., Ax,
fixed.

e The "Diagonal
Crs(B,A1, A, ..

Centers" phase minimizes
., Ag) wr.t. all the diagonal matri-

ces Ay, Ag, ..., Ak, while keeping B fixed.
Furthermore, this algorithm may be adapted to non
square diagonalizing matrix B (this problem occurs in
blind sources separation when there are more sensors
than sources.)

4. COMPUTER SIMULATIONS

In this section, we compare the results obtained us-
ing a pre-whitening of the observations followed by a
classical orthogonal JD procedure with those obtained
without pre-whitening but with a non-orthogonal JD
procedure. The experiment is realized on NV = 3 corre-
lated sources signals received on N = 3 sensors, there is
no noise. The SQTFD are computed over 64 frequency
bins and 128 time samples using Pseudo Wigner-Ville
(PWV) distribution. The trace of the spatial PWV
distribution of sources is given Fig.2. The estimated
correlation matrix of the sources and the mixing ma-
trix are respectively:

1 0.12 0.18 1 06 0.2
C,(0)=10.12 1 0.17 A=104 1 06
0.18 0.17 1 0.7 03 1

To establish a comparison between the algorithms, the
following performance index [5] is used:

N | AT AP
(A7 A) = 2[;(; max; [(A=1A)]? )
|(A_1A)ij|2

.
M 20 Dy wy i)

where A stands for the estimated mixing matrix. Ap-
plying this performance index, we find I, = 0.0377
for JD after pre-whitening and I, = 5.7¢~% for non-
orthogonal JD without pre-whitening. In Fig.3, are
pictured the ¢-f points used in the building of the ma-
trices set to be joint-diagonalized thanks to the two
different techniques we have used. Fig.4 represents the
estimated sources and Fig.5 displays a comparison be-
tween the theoretical results and those obtained with
both orthogonal and non-orthogonal JD.

5. DISCUSSION & CONCLUSION

In this communication, we have shown that blind sour-
ces separation based on spatial quadratic time-frequen-
cy distribution exhibiting hermitian symmetry can be
performed without a preliminary whitening of the ob-
servations. This is made possible thanks to a gen-
eralization of ¢-f points selection criteria and to the
non-orthogonal JD procedure developed by A. Yere-
dor. The main advantage of this approach is that the
classical hypothesis of independence of the sources can
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be given up: even correlated sources can be treated
now.
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Figure 1: Decision algorithm, with Sy, Sa, S5 three thresh-
olds (3 small constants in the noiseless case)
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Figure 2: The 3 sources (left), the trace of the spatial PWV
distribution of sources (right)
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Figure 3: ¢-f points retained in the building of matrices set
to be JD: orthogonal JD (left), non-orthogonal JD (right)
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Figure 4: Sources estimated thanks to orthogonal JD (left),
non-orthogonal JD (right)
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