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ABSTRACT

In this paper a novel application of the simultaneous
perturbation stochastic approximation algorithm (SPSA)
to the noisy non-stationary blind source separation
problem is presented and described. The proposed
approach demonstrates the algorithm with a second order
cost function suitable for applications to non-stationary
data. Some extensions to the algorithm that are currently
being investigated are also described in the paper, and the
algorithm performance is demonstrated via simulation.

1. INTRODUCTION

Blind source separation deals with the problem of
separating a number of mixed statistically independent
signals impinging on an array of sensors. The term blind
arises from the fact that no information relating to the
mixing process is available.
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where ))()....(()( 1 ttt nxxx =  represents an n-dimensional
vector of  measurement signals, A  is the )( mn×
unknown mixing matrix, ))()....(()( 1 ttt nsss =  represents
the m-dimensional unknown source signal vector and

))()....(()( 1 ttt nυυυ =  is the sensor noise with t
representing the time index for all quantities.
The objective of the process is using only the information
available at the sensor outputs to perform a linear
transformation on the data in order that the sensor outputs
are as independent as possible. This may be described as
follows:

        )()( tt Wxy =                           (2)

where ))()....(()( 1 ttt nyyy = T represents the n-
dimensional vector of  input source signal estimates and
W  is the )( mn×  demixing matrix.

As is standard with the source separation problem the
sources may only be estimated up to a scale and
permutation factor, the permutation ambiguity arises dues
to the fact that as no assumptions are made on the channel
or the sources then ordering itself is arbitrary, the scaling
ambiguity arises as the exchange of a fixed scalar between
the signal and the corresponding row in the mixing matrix
has no effect on the observed sensor signal output.
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Throughout this paper the following assumptions are
made.

(AS1) The mixing matrix A is full column rank.
(AS2) The sources are spatially and temporally
uncorrelated.
(AS3) The variances of the sources are time varying i.e.
they are second order non-stationary signals.
(AS4) The sensor noise )(tυ  is additive Gaussian white
noise spatially uncorrelated with the sources.

2. SPSA ALGORITHM

The SPSA algorithm was developed by Spall [1] and
since its development has been used for a number of
differing fields e.g. neural network training [5], traffic
management [6] and recently to the blind source
separation problem [2].

The goal of the algorithm is to minimize a scalar valued
cost function J(W), assuming only that noisy
measurements of the cost function are available, and that
the cost function is differentiable. Differing from standard
Robbins Monro SA algorithms that require either explicit
calculation or measurement of the gradient of the cost
function, the SPSA algorithm utilizes only two
measurements of the cost function and a random
simultaneous perturbation to estimate the gradient of the
cost function. This is calculated as follows:
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where c a small perturbation value, and ijξ  is the element

in the ith  row and jth column of a sign matrix with
elements taking a value +1 or –1 generated from a
Bernoulli distribution. The matrix elements ijξ  have the

following properties.
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Taking expectations of the Taylor series expansion of
equation (4)
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from equations (4), (5) and (6) we have

                          
ijd

dJE
W
WW )(}{ ij =∆                                (7)

Thus to obtain more accurate estimates of the required
gradient a number of estimates of the gradient are made
and the expectation of the gradient estimates is used in a
standard stochastic approximation gradient update
equation. The sample expectation is taken over N values
of the gradient estimates.
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ka  represents the step size parameter for the system. To
improve system convergence the step size is exponentially
decayed with increasing data points as follows:
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with  a and D chosen as initially as small values.

3. SECOND ORDER BSS ALGORITHMS

Over the last 15 years there has been an extensive interest
into the topic of blind source separation. Commonly it is

assumed that the signals are independent and identically
distributed (i.i.d) and the separation is performed using
either implicitly [10] or explicitly [11] higher order
statistics of the sensor output signals. This is known as
Independent Component Analysis (ICA) [11].  When the
source signal data represents that of a time series then the
signals can be separated using second order statistics.
For the problem posed in this paper the above
assumptions imply
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using these results and without loss of generality
assuming the variance of the source signals is unity and
the noise variances are identical equal to 2

υσ . The
covariance matrix of the sensor outputs is

                       IAAxxR 2}{ υσ+== TT
kkxx E              (12)

Using one of the standard second order blind source
separation algorithms (e.g. SOBI [3], TDSEP [4],
AMUSE [7]) will result in biased estimates of the
demixing matrix. To avoid this the noise covariance
matrix must be included in the algorithm [8]. A number of
differing criterion are desirable when designing the
separation algorithm e.g. output source decorrelation,
output source power control etc. Recently in [9] a linear
combination of elementary cost functions was defined.
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4. BSS USING SPSA

The cost function used for the signal separation in this
paper was as follows [9]:
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The operator off  in the above equation represents the off-
diagonal terms of a matrix. This function gives a measure
of the signal decorrelation in the noise free case. This
makes the implicit assumption that the variance of the
noise is known a priori or that the variance can be
estimated from the data.
Yet the problem with equation (14) is that the trivial
solution 0=W  also minimizes this function. Therefore in
accordance with [9] a constraint is also placed upon the
separating matrix W to avoid the trivial solution. The
constraint is as follows.
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Where )()( WWW diagddiag −= .

Thus the overall cost function used is a linear combination
of 1J  and 2J .

                              21 α),( JJRWJ +=nnT            (16)

5. SIMULATIONS

In the following an example illustrating the described
algorithm is demonstrated. It is known that the closer the
global system matrix WAG =  is to a permutation matrix
the better the separation. During simulations the mixing
matrix is known and is used to assess the performance of
the system. The performance measure used is the average
interference [4]:
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Where ijg  represents the element in the ith row and jth

column of a )( nn× matrix G . The input sources for the
system were 3 speech signals of 5000 samples duration,
sampled at 8kHz. The mixing and demixing matrices were
chosen randomly from a uniform distribution. The
variance of the noise was 2σ = 0.1, ka  was set initially to
0.1 and kc  was given an initial value of 0.05. The
gradient calculations were averaged over 10 iterations.

Fig 1. Learning curve showing the Signal to Interference
Ratio (SIR)

It can be seen from the above diagram that the algorithm
had converged after approximately 1200 iterations.

6. EXTENSIONS

A number of new algorithms have been investigated.
These include a projection scaling algorithm, the use of
simulated annealing, and a linear constraint algorithm.
The projection algorithm drives the iterative solution
towards a collinear solution along the gradient direction,
and can be expressed as:
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Given the convergence value of
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and b is a regularization parameter that ensures the
avoidance of the trivial solution 0=W while striving
towards the minimal value of the cost function.
 In the simulated annealing algorithm the perturbation
values and the associated scaling matrix are chosen from a
Boltzman distribution based on gradient direction. This
will be presented at the conference.
In the linear constraint algorithm the cost function is
augmented by a linear (planar) constraint, to drive the
solution towards a constraint optimum away from the
trivial solution.

7. CONCLUSION

In this paper the SPSA algorithm has been utilised for the
optimization of a second order cost function with
application to the blind separation of non-stationary
sources. Numerical simulations have been included
demonstrating the operation of the algorithm for linearly
mixed uncorrelated speech signals. The application of the
algorithm to the offline separation of convolutively mixed
signals is an area of our current research.
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