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ABSTRACT

Time-frequency domain blind source separation (BSS) leads to
a seldom mentioned but important problem that generally the
independence assumption between source signals collapses in
frequency domain due to inadequate samples. It consequently
degrades the performance of all the ICA-based BSS methods.
In this paper, we set up a criterion on the performance of
separation at each frequency bin and propose a recursive
algorithm to correct the bin separations which are thought
improper. The bin mixtures are separated into the components
of the sources as practical instead of the “independent” bins as
achieved by the conventional ICA. The signal-to-noise ratio is
greatly increased at certain bins, which results in a much better
separation.

1. INTRODUCTION

Blind source separation has received extensive attention
in signal and speech processing, machine intelligence,
and neuroscience communities. The goal of BSS is to
recover the unobserved source signals without any prior
information given only the sensor observations that are
unknown linear mixtures of the independent sources. A
variety of successful ICA methods have been developed
for this purpose [1-5].

Due to the multi-path effect and reverberation in real
environment, computationally blind speech separation is
often implemented in time-frequency domain. A number
of approaches for the convoluted source separation have
been reported. The formation of BSS could be
summarized as follows. Source signals are assumed to be
independent with each other, zero mean, and are denoted
by a vector $(¢)= (s1 (t),---,SN (t))T. When the
signals are recorded in a real environment, the
observations can be approximated with convolutive
mixtures of source signals,

x(t)=A+s(t) = (Zaik*si(t)j, (1)

1
where 4 is an unknown polynomial matrix, a,is the
impulse response from source i to microphone &, and the
symbol * refers to convolution. In frequency domain, the
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Fig 1. Flow chart of BSS system. Perm.: Permutation.
Mixt.: Mixture. Sepa.:Separation. The process above the
dot line is in frequency domain, and the process below is
in time domain.

convolutive mixing problem is decomposed into multiple
instantaneous mixing problems.

X(f.0)= A)S( ,0). 2
The instantaneous mixing problem then can be solved
using any desired ICA method. With the derived
unmixing filter W(f), we recover the source signals by

S(ft)=PDW(f)X(f1). 3)
where, P and D are the solution to the ambiguity of
permutation and scaling. The bin unmixing filters are
then transferred into time domain unmixing filter. Fig 1
shows the commonly adopted process flow of
conventional time-frequency domain implementation.

2. THE PROBLEM

Due to the dynamic mixing process in real environment,
BSS is normally implemented on a short time period of
observations. Frequency domain implementation leads to
much less samples than that in time domain. Speech
signals normally are non-stationary. As a result, there
often exists large estimation error in the second and
higher order statistics. For example, the correlation
function between the source signals can no longer be
expected to be zeros. We say that the independence
assumption collapses in frequency domain [6]. The
frequency components of source signals, corresponding
to the observations of the limited samples, are correlated.
For evaluation of the correlation between
S,(f1), +,8(ft), we define the following matrix:

V() =diag((S(0S" (£0) (S8 (£1), (4)
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Fig 2. Correlation distribution against frequency

where (-) denotes the expectation operator, and
<S(<f,‘z)s" (f,‘t)> is the normalized covariance matrix. The
correlation between the frequency components of source
signals, denoted as I(f), is quantified by the Frobenius
norm of V(). It is further normalized and defined as,

I =v)|= \/[ZkIV,k (A / (N*-=N) (5

The higher the wvalue I(f) is, the lower the
independence will be. Fig. 2 shows the correlation
distribution against frequency between two speech
samples, “Good morning” and “Konbanwa”. The signals
are about one second in length, and the sampling rate is
16kHz. The DFT length is 512 samples (32msec) and the
window shift is 5 samples. Hamming window is used. It
is noted that the correlation may vary in some degree
when using different frame length and window shift. But
it will not cause significant change to it.

Regardless of the ICA method, the off-diagonal
elements of the covariance matrix of the separated
signals are to be minimized as practical, ideally
minimized to zeros. In other words, ICA will make I(y)
close to or equal to zero. The existing correlation
between the sources as shown in Fig.2 apparently shows
that ICA will not work perfectly in such case. It degrades
the performance of ICA, sometimes makes the separation
completely failed. Furthermore, it makes the solution to
the ambiguity of scaling and permutation more difficult.

3. DETECTION OF IMPROPER SEPARATION

Fig.3 shows an example of improper separation. Y1 and
Y2 are the separated results achieved by the time delayed
decorrelation method (TDD) [4], and S1, S2 are the
components of original sources. The waveforms are the
norms of the complex-valued signals respectively.
Although Y1 and Y2 are uncorrelated with each other,
comparing with S1 and S2, it is obvious that Y1 and Y2
are quite similar at certain segment pairs, for example at
[1900, 2200] and [2400, 3000].

The criterion is set up on the above observation. We
divide the separated signals 3‘( f,t) into a number of
continuous segments 3‘( f,0) , and use the averaged
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Fig 4. Comparison of segmental similarities between
improperly separated signals and original signals.

segmental similarity (ASS) as the criterion to make the
decision. The ASS is defined as,

o J H

4ss, 1l |Si(f’l)'si(f’l) || ©
Lia |s,cr.o|ls,or.0)

S0 =S8, (-1 xm+1:1xm), (7

where, / is the segment sequence number and m is the
segmental length.

Figure 4 shows the segmental similarities between Y1,
Y2 and S1, S2, respectively. They are divided into six
segment pairs with m equals to 500, respectively. We can
see that the average of the segmental similarities of
improper separation (Y1, Y2) is higher than that of
complete separation (S1, S2). In other words, those with
higher averaged segmental similarity tend to be improper
separation.

4. CORRECTION
4.1. Method

The ideal correction method is to make the separation
work on the mixtures of which the source signals become
independent. However, it is impractical because the
correlation comes from the whole signal components.
Then we turn to assume that among the whole signal
component, a few of the segments play a critical role in
the formation of the correlation, or in other words, a few
of the segments have critical effect on the improper
separation. We try to take away these segments and make
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the separation work on the remaining mixtures of which
the corresponding source signals become less correlated.
Then we can use the derived unmixing filter to separate
the original mixtures and expect a better separation.

We use two trial-and-error schemes to find these
segments. One is called scheme | (exhaustive search) in
which all combinations of segments are searched to
detect segments leading to improper separation. However,
the number of combinations of segments becomes huge.
Computationally, it is too heavy to search every
combination. In consideration that the segment with
higher variance has heavier weight in the learning of the
unmixing filter, the scheme 2 selects the segments with
high variance as candidates to be removed. Of course the
segments with high variance actually are not necessarily
the reason for the improper separation and also convey
important cues in the separation. To avoid worse
separation, we use ASS to distinguish the result.

4.2. Algorithm

Because there isn’t an exact correspondence between
ASS and the performance of separation, we set up two
thresholds in the algorithm. Threshold 1 is set up for
distinguishing the bin separation, whether the correction
is needed or not. Threshold 2, which is lower than
threshold 1, is set up for making the decision whether to
accept the new separation and stop the loop or not.

The process flow of the scheme 2 within each
frequency bin is depicted in Fig 5. First if ASS is greater
than threshold 1, the separation is considered to be
improper and needed to be corrected. We remove the
segments with high variance in sequence until ASS is
below threshold 2. N is the designated maximal iteration
times. That means, among the whole L segments, totally
there might be N segments to be removed. N should at
least be smaller than L/2 because too short samples
cannot ensure good derivation of the unmixing matrix.
When the maximal iteration times are reached and
threshold 2 still cannot be satisfied, among the iterations,
the separation that outputs the minimum ASS is selected
as a final result.

5. SIMULATION TESTS
In the simulation tests, the proposed method is used
combined with the time delayed decorrelation method
(TDD), Infomax and Jade, respectively [1, 4-5].
5.1. Simulation 1: Effect of the method

First, the performance of the recursive method was
evaluated in the simplest condition. The same signals as
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Fig 5. Process flow of the correction algorithm (scheme 2).

in section 2 were used, where the mixing matrix was
[1,0.5; 0.7,1]. The mixtures were divided into frames of
32 msec length each and the window shift was 5 samples.
The length of FFT is 512, and Hamming window was
used. Threshold 1 and 2 were set to 0.55 and 0.4
respectively. Experimentally, segment number L equals
to 15-20 is adequate to provide a considerable
improvement. Here L and m were set to 15 and 200,
respectively. The maximal iteration times N was 7. We
compared our results with those of the conventional
methods.

Figure 6 shows a significantly improved example
achieved at one frequency bin. The 1* and 4™ waveforms
are the norm of the separation results S‘( ft) achieved
by TDD. Comparing with the 3" and 6™ waveforms of
the original sources, the 1% and 4™ waveforms are far
away from the 3" and 6™ waveforms respectively. The
separation is improperly implemented. The 2™ and 5™
waveforms are those of the result of the recursive method.
They are very close to the original sources and obviously
much better than the 1% and 4™ waveforms. Apparently
the result achieved by the recursive method, better both
in amplitude and waveform, will make it easy to do a
proper selection on the ambiguity of permutation.

Figure 7 shows the comparison of SNR and ASS
between TDD and the recursive method. Considerable
improvement in SNR has been achieved. At the
designated threshold 1, about 40 percent of the bins were
considered to be improperly separated and were
corrected by the method. Accompanying with the
improvement of SNR, ASS decreased about 0.17 in
average. Although SNR became a little worse at a few
bins, an overall improvement is achieved. Fig 8 shows
the averaged results of 24 trails on different pairs of
speeches using TDD, Infomax and Jade, respectively.
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Fig 6. An example of significant improvement
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Fig 7. The upper two figures show the improvement of
SNR at source 1 and 2, respectively.
ASNR=SNR,1pp-SNRpp. The lower figure depicts
the difference of ASS before and after the recursive
method. AASS:ASSTDD-ASS(TDD.

5.2. Simulation 2: Convolutive mixtures

We tested the method on convolutive mixtures. We
trialed on 24 pairs of speech signals from ASJ
Continuous Speech Database. They were mixed using the
filters in eq. (8).

A =09+05z" +03z"

1

A =-07z"-03z"-02z"

12

A, =052 +03z2"+02z"
A, =08-01z" (®)

Same parameters were used as in 5.1 with the
exception that: window shift was 20, L and N equaled to
20 and 8. Two and half seconds length of the mixed
speech signals were used to learn the unmixing filter. The
averaged noise reduction ratios (NRR) are shown in Fig
9. The recursive method gave about 3.4, 3.2 and 3.5 dB
higher NRR in average than those of the conventional
TDD, Jade and Infomax, respectively.

A comparison test between the scheme of removing
high variance segments and exhaustive search was done.
Table 1 shows the comparison result. The scheme of
removing high variance segments gives a little worse
SNR than the exhaustion one but costs much less
computational loads.
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Table 1. Comparison between scheme 1 (exhaustive
search) and scheme 2 (removing high variance segments).

Normal Scheme 1 | Scheme 2
Maximum 5
iteration times 1 >10 8
Averaged SNR 11.7 dB 16.5 dB 15.3 dB
6. CONCLUSION

This paper addressed the correlation problem existing in
the time-frequency domain blind source separation. A
criterion was set up for distinguishing the improper
separation. And we proposed a recursive method to
correct the one that were thought improper. Simulation
tests proved its effectiveness.
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