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ABSTRACT

In this paper, we examine how one can exploit baseline
diversity of a multichannel interferometric SAR system to
overcome the layover problem. The problem arises when
different height contributions collapse in the same range-
azimuth resolution cell, due to the presence of strong terrain
slopes or discontinuities in the sensed scene. We propose a
multilook approach to counteract the presence of the time-
and-space varying amplitude distortion which is due to the
extended nature of natural targets; to this purpose we extend
a recent relaxation based approach by estimating the inter-
ferometric phases using a nonlinear least squares estimation
technique that is based on a deterministic modelling of the
amplitude distortion.

1. INTRODUCTION

Interferometric synthetic aperture radar (InSAR) is a pow-
erful and increasingly expanding technique allowing esti-
mation of three dimensional terrain images, with high spa-
tial resolution and height accuracy. The technique suffers
from the layover phenomenon that shows up when the im-
aged scene contains highly sloping areas or discontinuous
surfaces [1, 2]. In these conditions, the received signal is
the superposition of the echoes backscattered from the var-
ious patches of terrain that are mapped in the same range-
azimuth resolution cell but have different elevation angles.
The result is that the height map produced by the InSAR
system is affected by strong distortions. Given the extended
nature of the backscattering sources, the received signal is
affected by a time-and-space varying amplitude distortion
(often modelled as multiplicative noise), termedspecklein
the radar imaging jargon. A multibaseline InSAR system
has the ability to resolve the multiple sources along the el-
evation angle, and several approaches have been suggested
in the literature. In [3], a beamforming approach was sug-
gested to solve this problem. However, beamforming suf-
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fers from well-known problems of resolution and leakage.
Generally, it is not possible to obtain a large overall base-
line with enough coherent samples to attain the desired res-
olution in elevation [4, 5]. Subsequently, superresolution
techniques, not taking account of the extended nature of
the backscattering sources, were considered [6, 7]. In [8],
the APES algorithm was extended to handle multilook data.
Recently, the Capon, least-squares, root-MUSIC and RE-
LAX algorithms have also been applied to the multibase-
line problem [9, 10]. Of these, the multilook version of RE-
LAX, termed M-RELAX, was the one often to be preferred.
A mathematically closely related problem is encountered in
wireless communication due to the presence of scatterers
in the vicinity of the mobile, a problem that has received
a lot of attention in the recent literature (see, e.g., [11, 12]
and the references therein). In this work, we propose us-
ing the nonlinear least squares (NLS) estimator of a single
backscattered signal as derived in [11] in the M-RELAX
algorithm [9, 10]. The RELAX algorithm [13] is a relax-
ation based technique that recursively estimates the coef-
ficients of a multicomponent complex exponential signal.
The M-RELAX estimator is derived under the assumption
that the speckle can be modelled as a spatially stationary,
temporally white Gaussian random vectors. This common
(and rather restrictive) assumption is also employed in [12]
and in many other recent papers. The proposed estimator
(termed DM-RELAX) differs in the sense that it allow an
arbitrary distortion of the wavefront, with the only restric-
tion (to ensure identifiability) being that the propagation of
the wavefront along the array is not distorted in phase. This
much less restrictive model also allows the gains of the sen-
sors in the array to be unknown [11]. The numerical simu-
lations in [9, 10] indicates that the M-RELAX algorithm is
basically efficient for a modest number of looks. However,
the deterministic Craḿer-Rao bound (CRB) is lower than
the stochastic CRB [11], suggesting room for further im-
proved performance. Our numerical simulations verify this,
showing that DM-RELAX yields significantly improved es-
timates of the interferometric phases.
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2. MODEL DESCRIPTION

We consider a multibaseline cross-track interferometer sys-
tem withK phase centers aligned to form a uniform linear
array (see [8, 9, 10] for further background on the model as-
sumptions). To increase the accuracy in presence of speckle,
multiple looks are collected from homogeneous adjacent
pixels or from multiple observations obtained by partition-
ing the synthetic aperture [1, 2]. The complex amplitudes of
the pixels of thenth look corresponding to the same imaged
area on the ground, collected at theK phase centers of the
antenna array in the presence of layover, are modelled as

y(n) =
Ns∑

m=1

√
τmxm(n)¯ a(ϕm) + v(n), (1)

for n = 1, . . . , N , wherey(n), xm(n), a(ϕm), andv(n)
are K-dimensional complex vectors,̄ is the Hadamard
product,N is the number of available looks, andNs is the
number of extended backscattering sources, i.e., the num-
ber of laid over terrain patches located in the same range-
azimuth resolution cell, having different elevations. To en-
sure identifiability, we assume thatNs ≤ K − 1, whereNs

is assumed to be known [14]. The termτm is the texture,
or radar reflectivity, of themth terrain patch; it does not
change from one look to the other, but is different for dif-
ferent sources. Under the uniform linear array and far field
assumptions, the steering vector,a(ϕm), can be written as

a(ϕm) =
[

1 ejϕm/(K−1) . . . ejϕm
]T

, (2)

where (·)T denotes the transpose and the interferometric
phases,{ϕm}, are defined as the phase difference between
the two furthest phase centers. They are related in a one-
to-one mapping with the elevation angle of themth terrain
patch as well as to the spatial frequencyωm as [1, 9, 10]

ϕm = (K − 1)ωk. (3)

The speckle vectors,{xm(n)}, are some form of time-and-
space varying amplitude distortion. In the following, we
will at first model the speckle as stationary complex Gaus-
sian distributed vectors in the derivation of the M-RELAX
estimator. We will then proceed to loosen this assumption,
allowing an (almost) arbitrary distortion, in the derivation
of the DM-RELAX estimator.

Finally, {v(n)} areN independent and identically dis-
tributed (i.i.d.) complex white Gaussian distributed vectors
whose components have powerσ2

v .

3. THE MULTILOOK RELAX ESTIMATOR

The multilook RELAX (M-RELAX) algorithm [9, 10] is
an extension to the multilook scenario of the RELAX al-
gorithm. It is derived under the assumption that the ampli-
tude distorting vectors,{xm(n)}, are modelled as stationary

complex Gaussian distributed vectors with zero-mean, unit
variance and covariance matrix

Cm = E
{
xm(n)xH

m(n)
}

, m = 1, . . . , Ns (4)

where E{·} denotes the expectation operator and(·)H the
conjugate transpose. In shorthand notation, we write

xm(n) ∼ CN (0,Cm). (5)

Assuming that both the looks and the backscattering sources
are independent, the vectorsxi(n1) andxl(n2) are mutu-
ally independent fori 6= l, orn1 6= n2. We also assume that
the speckle correlation sequences,rxm(k), are real-valued.
Given these assumptions, the M-RELAX estimates are ob-
tained by minimizing [9, 10]

QN (αn, ũ) =
N∑

n=1

∥∥∥∥∥y(n)−
Ns∑

m=1

αm(n)a(ωm)

∥∥∥∥∥

2

(6)

where

ũ =
[

ω1 . . . ωNs

]T
(7)

αn =
[

α1(n) . . . αNs(n)
]T

(8)

The M-RELAX estimate is obtained by estimating the dom-
inant component, removing it from the data, and then re-
peating the procedure for each of theNs components to be
estimated. The algorithm estimates recursively all the com-
ponents until the convergence condition has been satisfied.
In this way, the multidimensional non-linear minimization
is transformed into a sequence of simpler one-dimensional
problems. For a signal consisting of multiple complex si-
nusoids in additive white Gaussian noise, the RELAX algo-
rithm provides frequency and amplitude estimates that are
asymptotically Gaussian distributed, unbiased and efficient
[13]. Define the residual data

yl(n) = y(n)−
Ns∑

m=1,m6=l

α̂m(n)a(ω̂m), (9)

where{α̂m(n), ω̂m}Ns

m=1,m 6=l are the estimates already avail-
able, obtained in the previous steps. By replacingy(n) with
yl(n) in the cost function (6), minimizing with respect toωl

andαl(n), we obtain

ω̂l = arg max
ω

aH(ω)R̂la(ω), (10)

whereR̂l is the sample covariance matrix estimated using
{yl(n)}N

n=1, and

α̂l(n) =
1
K

aH(ω)yl(n). (11)
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It is worth noting that the data model in (6) is mismatched
with the actual data model in (1), due to the presence of
the amplitude distortion. As a result, the cancellation in
(9) will never completely remove the signal components,
not even if the parameters are perfectly estimated. Also
note that the maximization in (10) is the NLS estimate of a
single non-extended source (single scatterer) in the spatial-
domain, constituting of nothing but the beamforming spec-
trum of the data{yl(n)}.

4. THE DM-RELAX ESTIMATOR

We proceed to allow an arbitrary deterministic distortion of
the wavefront, with the only restriction being that the prop-
agation of the wavefront along the array is not distorted in
phase, i.e., under the assumption that the speckle vectors,
{xm(n)}, are real-valued. However, we do allow an un-
known time-varying phase component as long as it does not
change over the array [11]. We note that results reported in
[11] indicate that the estimator will be robust and perform
reasonably well even in the presence of phase fluctuations
of the wavefront, i.e., when{xm(n)} is complex-valued, a
result verified in our numerical simulations.

Under these assumptions, the NLS estimate of the spa-
tial frequency,ω̂, in the case of a single source, can be
shown to be [11]

ω̂ = arg max
ω

N∑
n=1

∣∣∣∣∣
K−1∑

k=0

a2H
k (ω)y2

k(n)

∣∣∣∣∣ , (12)

whereyk(n) andak(ω) denote thekth index ofy(n) and
a(ω), respectively. Note that the unambiguous estimation
range ofω using (12) will be half of the estimation range
obtained using (10), and the spatial frequency estimate must
thus be scaled accordingly. The inner sum in (12) can be
evaluated using the FFT algorithm with zero padding ap-

plied to the squared data samples
{
y2

k(n)
}K−1

k=0
(for eacht).

For multiple sources, the number of unknowns is larger
than the number of available observation, and the NLS esti-
mate is not identifiable [11]. Furthermore, the single source
estimator in (12) would fail if applied as an alternative to
(10) in the M-RELAX recursion, as the squaring of the sam-
ples in (12) will introduce undesired cross terms yielding
erroneous spatial frequency estimates. However, this prob-
lem can be avoided by initializing the estimation using the
M-RELAX algorithm, and then applying the single source
estimator in (12) on the residual data sequences as obtained
from (9).

In an effort to refine the interferometric phase estima-
tion, we thus propose to replace the single source phase es-
timate in (10) with the estimate in (12), after obtaining a set
of initial estimates using M-RELAX.
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Fig. 1. Root mean square error ofϕ1.

5. NUMERICAL EXAMPLE

Performance analysis has been carried out assuming that the
vectors{xm(n)}N

n=1 are i.i.d. with zero mean and spatial
autocorrelation sequence given by

rxm(k) = E
{
[xm(n)]l · [xm(n)]Hl+k

}

=
{

1− |k|
K−1bm, for |k| ≤ K−1

bm

0, otherwise
(13)

whereK is the number of antennas in the InSAR system
andbm is the normalized baseline relative to themth patch
[9, 10]. This triangular correlation sequence is the basic
speckle model used in SAR interferometry for flat extended
targets [1, 2]. Note that it will yield complex valued speckle
vectors, testing the robustness of the DM-RELAX estima-
tor. As was shown in [15], one often obtain improved spec-
tral estimates by substituting the forward-only sample co-
variance matrix estimate,̂Rl, with the forward-backward
averaged sample covariance matrix,

R̂fb
l =

1
2

(
R̂l + JR̂T

l J
)

, (14)

whereJ is theK × K exchange matrix. This is also our
experience, and we thus replaceR̂l in (10) with R̂fb

l . As
is done in [9, 10], we assume a system withK = 8 phase
centers with two sources present (Ns = 2). Furthermore,
we assume that the values of the parametersϕ1 = 0◦, ϕ2 =
360◦, b1 = b2 = 0.2, SNR1 = SNR2 = 12 dB, where
SNRm is the signal to noise ratio of themth source, de-
fined asSNRm = τm/σ2

v . Two sources with normalized
baselinesb1 and b2 are considered adjacent when∆ϕ =
|ϕ1−ϕ2| is equal to∆ϕad = 2π(b1 + b2). When separated
less than∆ϕad, the sources collapse into only one [16]. In
our case, the Rayleigh limit is∆ϕB = 2π(K − 1)/K =
315◦, and∆ϕad = 144◦, so∆ϕ > ∆ϕB > ∆ϕad.
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The performance of the estimators are analyzed in terms
of root mean square error (rmse),

rmse(ϕ̂m) =
√

E {(ϕ̂m − ϕm)2}, (15)

evaluated by means of104 Monte-Carlo simulations, where
the estimators are implemented using the FFT zero padded
to 256 points. Figures 1 and 2 shows the rmse of the first and
second interferometric phase estimates, clearly indicating
the improved performance of DM-RELAX.
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Fig. 2. Root mean square error ofϕ2.
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