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ABSTRACT fers from well-known problems of resolution and leakage.

Generally, it is not possible to obtain a large overall base-
line with enough coherent samples to attain the desired res-
olution in elevation [4, 5]. Subsequently, superresolution
techniques, not taking account of the extended nature of
the backscattering sources, were considered [6, 7]. In [8],
e APES algorithm was extended to handle multilook data.
ecently, the Capon, least-squares, root-MUSIC and RE-
LAX algorithms have also been applied to the multibase-

In this paper, we examine how one can exploit baseline
diversity of a multichannel interferometric SAR system to

overcome the layover problem. The problem arises when
different height contributions collapse in the same range-
azimuth resolution cell, due to the presence of strong terrain
slopes or discontinuities in the sensed scene. We propose
multilook approach to counteract the presence of the time-
and-space varying amplitude distortion which is due to the ) :
extenged natu?le ogf natlFJ)raI targets; to this purpose we exten ine problem [9, 10]. Of these, the multilook version of RE-

a recent relaxation based approach by estimating the inter- AX, termed. M-RELAX, was the one often. to be preferred_.

: R hA mathematically closely related problem is encountered in
technique that is based on a deterministic modelling of theW'reIeSS. g:qmmunlcatlon QUe to the presence of scat_terers
amplitude distortion. in the V|cm|ty' of Fhe mobile, a'problem that has received

a lot of attention in the recent literature (see, e.g., [11, 12]
and the references therein). In this work, we propose us-
1. INTRODUCTION ing the nonlinear least squares (NLS) estimator of a single
i i i backscattered signal as derived in [11] in the M-RELAX
Interferometric synthetic aperture radar (INSAR) is a pow- algorithm [9, 10]. The RELAX algorithm [13] is a relax-

erfu! and increasjngly t.expanding'te'chnique a!lowipg esti- ation based technique that recursively estimates the coef-
mation of t_hree dlmen3|0nal terrain images, W't_h high spa- ficients of a multicomponent complex exponential signal.
tial resolution and height accuracy. The technique suff_ers-rhe M-RELAX estimator is derived under the assumption
from the layover p.heno.menon th_at shows up when the 'M"that the speckle can be modelled as a spatially stationary,
aged scene contains highly sloping areas or discontinuougg o141y white Gaussian random vectors. This common
surfaces [1, 2] In these conditions, the received signal IS(and rather restrictive) assumption is also employed in [12]
the superposition of the echoes backscattered from the Varang in many other recent papers. The proposed estimator

ious patches of terrain that are mapped in the same rangeemeq pM-RELAX) differs in the sense that it allow an
azimuth resolution cell but have different elevation angles. arbitrary distortion of the wavefront, with the only restric-

The res.ult is that the height map _producgd by the INSAR ;5 (to ensure identifiability) being that the propagation of
system is affected by strong distortions. Given the extendedthe wavefront along the array is not distorted in phase. This
nature of the backscattering sources, the received signal isp, o1, |ess restrictive model also allows the gains of the sen-
affected by a time-and-gp_ace_ Vary"ﬁg amplitude disftortion sors in the array to be unknown [11]. The numerical simu-
(often modelleq as_multlphcatwe r.|0|se),. termepecklen lations in [9, 10] indicates that the M-RELAX algorithm is
the radar Imaging jargon. A mul'gbasellne INSAR system basically efficient for a modest number of looks. However,
has the ability to resolve the multiple sources along the el- 4 . yaterministic Craér-Rao bound (CRB) is lower than
gvatioq angle, and several approaches have been suggest@ﬁe stochastic CRB [11], suggesting room for further im-
in the literature, In_ [3]. & beamforming approach Was SU9- hroved performance. Our numerical simulations verify this,
gested to solve this problem. However, beamforming suf- showing that DM-RELAX yields significantly improved es-

*This work was partly supported by the Italian National Research timates of the interferometric phases.
Council (CNR).
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2. MODEL DESCRIPTION complex Gaussian distributed vectors with zero-mean, unit

variance and covariance matrix
We consider a multibaseline cross-track interferometer sys-

tem with K phase centers aligned to form a uniform linear Cn =E{xn(m)xl(n)}, m=1,....N, (4
array (see [8, 9, 10] for further background on the model as-

sumptions). To increase the accuracy in presence of specklewhere E{-} denotes the expectation operator dnd’ the
multiple looks are collected from homogeneous adjacent conjugate transpose. In shorthand notation, we write

pixels or from multiple observations obtained by partition-

ing the synthetic aperture [1, 2]. The complex amplitudes of Xpm(n) ~ CN(0,Cy). (5)

the pixels of thexth look corresponding to the same imaged i )

area on the ground, collected at thephase centers of the Assuming that both the looks and the backscattering sources

antenna array in the presence of layover, are modelled as @re independent, the vectat(n,) andx;(ny) are mutu-
ally independent fof £ [, orn; # no. We also assume that

N, .
- the speckle correlation sequences,,(k), are real-valued.
y(n) = Z VTmXm(n) ©alem) +v(n), (1) Given these assumptions, the M-RELAX estimates are ob-
m=l tained by minimizing [9, 10]
forn = 1,...,N, wherey(n), x,,(n), a(em), andv(n)

are K-dimensional complex vectorsy is the Hadamard N N, 2
product,N is the number of available looks, aid, is the Qn(ap,0) = Z y(n) — Z am(n)a(wm) (6)
number of extended backscattering sources, i.e., the num- n=1 m=1

ber of laid over terrain patches located in the same range-

azimuth resolution cell, having different elevations. To en- where

sure identifiability, we assume that, < K — 1, whereN, q - [ ©1 ]T )

is assumed to be known [14]. The tenm is the texture,
or radar reflectivity, of thenth terrain patch; it does not a, = [ai(n) ... an.(n) ]T (8)
change from one look to the other, but is different for dif-
ferent sources. Under the uniform linear array and far field The M-RELAX estimate is obtained by estimating the dom-
assumptions, the steering vectafy,,, ), can be written as inant component, removing it from the data, and then re-
] ] T peating the procedure for each of thg components to be
a(pp) = [ 1 elen/(K=D 0 edem |7 (2)  estimated. The algorithm estimates recursively all the com-
where (-)T denotes the transpose and the interferometric POnents until the convergence condition has been satisfied.
phases{y,, }, are defined as the phase difference between_ln this way, the_ multidimensional nc_m-lmear m|n|_m|zat|_on
the two furthest phase centers. They are related in a onelS transformed into a sequence of simpler one-dimensional
to-one mapping with the elevation angle of thh terrain problems. For a signal consisting of multiple complex si-

patch as well as to the spatial frequensy as [1, 9, 10] nusoids in additive white Gaussian noise, the RELAX algo-
T rithm provides frequency and amplitude estimates that are
om = (K — 1)wg. 3) asymptotically Gaussian distributed, unbiased and efficient

The speckle vectorgx,, (n)}, are some form of time-and-  [13]- Define the residual data
space varying amplitude distortion. In the following, we
will at first model the speckle as stationary complex Gaus- yvi(n) = y(n) — Z G ()2 (), (9)
sian distributed vectors in the derivation of the M-RELAX

estimator. We will then proceed to loosen this assumption,

allowing an (almost) arbitrary distortion, in the derivation where{ Gy, (n)

of the DM-RELAX estimator. S _ able, obtained in the previous steps. By replaging) with
_ Finally, {v(n)} are N independent and identically dis- v, ;) in the cost function (6), minimizing with respectde
tributed (i.i.d.) complex white Gaussian distributed vectors anday (n), we obtain

whose components have power.

m=1,m%#l

O e m- are the estimates already avail-

& = argmax a’’ (w)Rya(w), (10)
3. THE MULTILOOK RELAX ESTIMATOR ¢

Wheref{]\lf is the sample covariance matrix estimated using
{y1(n)},—,, and

n=1"’

The multilook RELAX (M-RELAX) algorithm [9, 10] is

an extension to the multilook scenario of the RELAX al-
gorithm. It is derived under the assumption that the ampli-
tude distorting vectorgx,, (n)}, are modelled as stationary dy(n) = —a” (w)yi(n). (11)
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It is worth noting that the data model in (6) is mismatched RMSE of phase estimates

with the actual data model in (1), due to the presence of o MoRelax
the amplitude distortion. As a result, the cancellation in
(9) will never completely remove the signal components, 10 7]

not even if the parameters are perfectly estimated. Also
note that the maximization in (10) is the NLS estimate of a
single non-extended source (single scatterer) in the spatial-
domain, constituting of nothing but the beamforming spec-
trum of the datdy;(n)}.

rmse

4. THE DM-RELAX ESTIMATOR
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We proceed to allow an arbitrary deterministic distortion of
the wavefront, with the only restriction being that the prop-
agation of the wavefront along the array is not distorted in
phase, i.e., under the assumption that the speckle vectors,
{xm(n)}, are real-valued. However, we do allow an un- 5. NUMERICAL EXAMPLE

known time-varying phase component as long as it does not

change over the array [11]. We note that results reported inperformance analysis has been carried out assuming that the
[11] indicate that the estimator will be robust and perform vectors{xm(n)}f,v_l are i.i.d. with zero mean and spatial
reasonably well even in the presence of phase fluctuationsautocorrelation sequence given by

of the wavefront, i.e., whefix,,(n)} is complex-valued, a

Fig. 1. Root mean square error @f.

result verified in our numerical simulations. ram(k) = E{[xmm)]i - [Xm ()]}
Under these assumptions, the NLS estimate of the spa- 1— kL for |k| < K—1
tial frequency,o, in the case of a single source, can be = { 0 K-17m othervvi_sebm (13)

shown to be [11]

where K is the number of antennas in the INSAR system
. (12 andb,, is the normalized baseline relative to theh patch

[9, 10]. This triangular correlation sequence is the basic

speckle model used in SAR interferometry for flat extended
wherey;.(n) anday(w) denote thekth index ofy(n) and targets [1, 2]. Note that it will yield complex valued speckle
a(w), respectively. Note that the unambiguous estimation vectors, testing the robustness of the DM-RELAX estima-
range ofw using (12) will be half of the estimation range tor. As was shown in [15], one often obtain improved spec-
obtained using (10), and the spatial frequency estimate mustral estimates by substituting the forward-only sample co-
thus be scaled accordingly. The inner sum in (12) can bevariance matrix estimate;, with the forward-backward
evaluated using the FFT algorithm with zero padding ap- averaged sample covariance matrix,
plied to the squared data samplgg (n)}f:_o1 (for eacht). ]

. . b > RT
For multiple sources, the number of unknowns is larger R;" = 3 (Rl +JR; J) ) (14)
than the number of available observation, and the NLS esti-
mate is not identifiable [11]. Furthermore, the single source whereJ is the K x K exchange matrix. This is also our
estimator in (12) would fail if applied as an alternative to experience, and we thus replaBg in (10) with f{lfb. As
(10) in the M-RELAX recursion, as the squaring of the sam- is done in [9, 10], we assume a system with= 8 phase
ples in (12) will introduce undesired cross terms yielding centers with two sources presei,( = 2). Furthermore,
erroneous spatial frequency estimates. However, this prob+we assume that the values of the parameters: 0°, oy =
lem can be avoided by initializing the estimation using the 360°, b, = b, = 0.2, SNR; = SNR, = 12 dB, where
M-RELAX algorithm, and then applying the single source SNR,, is the signal to noise ratio of theith source, de-
estimator in (12) on the residual data sequences as obtainefined asSNR,, = 7,,/02. Two sources with normalized
from (9). baselinesh; andb, are considered adjacent whéxy =
In an effort to refine the interferometric phase estima- |1 — 2| is equal taAp,q = 27w (by + b2). When separated

tion, we thus propose to replace the single source phase edess thamAy, 4, the sources collapse into only one [16]. In
timate in (10) with the estimate in (12), after obtaining a set our case, the Rayleigh limit i&pp = 27(K — 1)/K =
of initial estimates using M-RELAX. 315°, andAp.q = 144°, S0Ap > App > Apaq.

K-1
> i (w)yi(n)

k=0

N
w = argmaxg
w

n=1
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The performance of the estimators are analyzed interms [6] S. Xiao and D. C. Munson, “Spotlight-Mode SAR
of root mean square error (rmse),

rmse(@m) = \/E {(@m - @m)z}’ (15)

evaluated by means @0* Monte-Carlo simulations, where
the estimators are implemented using the FFT zero padded [7]
to 256 points. Figures 1 and 2 shows the rmse of the first and

second interferometric phase estimates, clearly indicating

the improved performance of DM-RELAX.

rmse
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Fig. 2. Root mean square error of.
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