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ABSTRACT

We address the problem of Joint Angle and Delay Estimation us-
ing a sensor array in an unknown additive noise field. We propose
a stochastic Maximum Likelihood (ML) estimator. The algorithm
which is a 2-D extension of the Approximate Maximum Likeli-
hood (AML) is applied to the multiple channel sample model and
exploits the shift invariance of the data. The model allows the es-
timation of more parameter pairs than sensors and robustness of
the algorithm makes it possible to use blind techniques to estimate
the channel. Basic performances of the ML estimator are assessed
through simulations and are compared with other high resolution
methods. Comparisons are made against the stochastic Cramér-
Rao Bound (CRB) which is derived in the Appendix.

1. INTRODUCTION

Parametric Joint Angle and Delay Estimation (JADE) has received
considerable attention in the literature [2, 3]. Among the proposed
methods, many applied 2-D MUSIC, ESPRIT [2, 3] and Maxi-
mum Likelihood (ML) [4]. Only a few of these methods allow for
the simultaneous estimation of more paths than sensors. In addi-
tion, most available methods are based on the common simplifying
assumption of a Gaussian additive noise.

SI-JADE [2] and JADE-ESPRIT [3] are two powerful methods
exploiting the shift invariance in the space-time steering matrix
and they are based on a model which exploits the stationarity of the
channel parameters over long time intervals. The fading however
is varying, thus multiple channel samples are collected. The model
derived suggests a two step estimation where channel samples are
estimated first using a specially designed training sequence. Blind
channel estimation techniques are possible, however, they result
in an unknown estimation noise distribution which dramatically
limits the parameter estimation step [3].

In what follows, we propose an alternative method based on
stochastic ML to deal with unspecified noise distributions. As it
will be shown, the ML estimator is a 2-D extension of the Approx-
imate Maximum Likelihood (AML) estimator [5] for the JADE
model derived in [2]. The main advantage of the algorithm is that
it allows the estimation of more parameter pairs than sensors in a
blind scheme.

2. DATA MODEL

Consider the case of a single user transmitting a digital signal
in a specular multipath environment. P, the number of multi-
paths is assumed known. The channel is assumed to be fading
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but stationary over short time intervals. Each path is parameter-
ized by a Direction Of Arrival (DOA) 6,, a Time Difference Of
Arrival (TDOA) 7, (measured in terms of normalized symbol pe-
riods T = 1) and a complex fading 8,. The fading coefficients
can vary between time slots but not within symbol periods [3].
At the receiver end, an M element calibrated ULA array is used.
a(8,) = [1,e%,... eI%M=D]T is the functional form of the
array response to a path from direction 6, with (.)” denoting ma-
trix transpose. The channel is assumed to be nonzero over the
interval [0, L) with L = Ly + Tjax-

In matrix form, the received signals corresponding to the k-th
time slot can be written as follows

x® —g®g® y N® p=1, .. K @

where X®*) is a M x N matrix of received samples over interval
k, H") is the M x L matrix of channel samples, S*) isa L x N
Toeplitz matrix of unknown data symbols, N*) is the matrix of
additive noise samples and IV is the number of collected snapshots.

After applying the Fourier transform to the channel samples
H™® and dividing out the known Fourier transform of the samples
pulse shape function g(7,) = [g(—7p),---,9(L — 1 — 7)]%,
where g(t) is the known modulation pulse shaping function, it is
straightforward to observe that the channel satisfies the following
factorization [2]

H® = A(6)diag {B(k)} F" (1) )
where
Bk) = [Bi(k), . .., Br (k)] €)
A(0) =[a(61),...,a(6p)] )
F(r) =[f(r1),...,f(7P)] (5)
i £(rp) = [1,&7777e/ L P T DT (6)

is the L-dimensional vector of transformed samples of g(7,), @ =
[91,. ..,GP]T and 7 = [Tl,...,TP]T.

Applying the vec {.} operator to H®  we obtain the follow-
ing
y(k) =vec {H®} = [G(r) o A(0)B(K)

U, )B8(k) Q]

where o stands for Khatri-Rao product, i.e. a column-wise Kro-
necker product. The M L x P space-time steering matrix U(@, 7)
is assumed to be invariant over the observation interval.
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3. PARAMETER ESTIMATION

3.1. Blind Channel Estimation

Matrix H*) can be obtained from a blind channel estimation [2,
6]. The noisy channel estimates are
H® —g® 4 V(k); (8)

where V*) is the channel estimation noise.
Collecting the data over K time slots leads to the following
matrix form

Y = [y(1),...

The noise V and the signal fading B are assumed to be uncor-
related. The data covariance matrix is therefore given by

R=E{y®y"(K)} =U@O,IRU"(6,7)+Q (10)

 y(K)]=U(0,7)B+V. )

where Q = E {v(k)v” (k)} is the unknown covariance matrix
of the channel estimation noise, Rs = E {B(k)B" (k)}, v(k) =

vec {V(’“)} and (.)¥ denotes Hermitian transpose.

The received signal waveforms are assumed to be a random
zero-mean Gaussian process [7, 8], satisfying the following

y(k) ~ N(0,R) (12)

3.2. Noise Modeling

We consider the M L x M L-dimensional noise covariance matrix
Q as completely unknown. In what follows, we impose a model
on the background noise. The noise is modeled by a linear combi-
nation of (M L)? known base matrices and (M L)* unknown real
parameters. Thus, the spatial covariance matrix of the noise is as-
sumed to have the following structure

(ML)?

Q=) ¢,% (12)
d=1

where q = [q;,¢s,-- -, q(ML)z]T is the vector of unknown real
noise parameters and the base matrices &, are known.

Taking into account the Hermitian structure of matrix Q, it is
straightforward to identify the unknown parameters {g,} as fol-
lows: di = ML diagonal elements, d = ML(ML — 1)/2
off-diagonal real parts and ds = M L(ML — 1)/2 off-diagonal
imaginary parts of Q. Thus, the corresponding base matrices ®,
have accordingly entries 1 and %5 (see [5]).

3.3. Maximum Likelihood Estimation

Under the above assumptions, the joint density of the data is given
by [9]

fn<y)=<27r>—’2‘det{R—’2‘<n>}exp{—ézy”(km—l(my(k)}:
k=1

=(@2r)" % det{R‘ %(71)} exp{%trace [R‘ l(n)ft]} (13)

where n = [07,77,87(1),...,87(K),q"]" is the vector of
unknown parameters and Risthe sample covariance matrix of the
data, defined as X

R 1 u

R=2> y(k)y" (k) (14)

k=1

Omitting the constant terms £ and In(27), the negative LL
function of the observed data becomes [9, 5]

£(n) = In (det {R(n)}) + trace {R’l(n)f{} (15)
The AML algorithm [5] is based on the observation that

vec{R} = vec{U(e,-r)RBUH(O,‘r)}+vec{Q}

= [U"(0,7)®U(8,7)]vec{RB} + Qq
= U, 7)rs +2q
ue, Q]| '™ ]
[uer) 2|
= M(0,71)z (16)
where (.)* stands for complex conjugate, ® denotes matrix Kro-

necker product and £ = [vec {®1},...,vec {®( 12 }].
From (16), a consistent estimate z can be obtained as [5]

Py [UH (ﬁ‘T ® frl) U] L (R‘T ® R—l) P

where the dependence of U on @ and = was dropped for conve-
nience. Substituting (17) back into (15) leads to the modified cost
function

£(6,7) = In (det {R(0, 7)}) + trace {R*l (0, T)ﬁ} (18)

where R(8,7) = R(O, T,2(0,T)) (19)

Finally, the 2D-AML algorithm reduces to the joint minimiza-
tion of (18) with respect to both @ and =. In order to achieve
convergence, the algorithm needs to be well initialized. One way
to find an initial estimate is, first to assume that the noise is uni-
form Gaussian, i.e., Q = &I and then use any 2-D high resolu-
tion estimator to get the initial estimate. Use the initial estimate
to start either a simultaneous search [5] over 8 and 7, or through
a numerical iterative concentration of the LL function, where one
parameter is assumed known to obtain the other over each step [8].

4. CRAMER-RAO BOUND

The unconditional CRB corresponding to the assumptions on our
model is as follows

CRBmz%{ZRe [(ReU'RORs) o (" PED]-mzai} -
(20)
where @ stands for Schur-Hadamard product, and
9N = 2Re {QT[(f)HPg) ® (RBTfJTft_T)] ’P*} 1)

T =Re {P"(R™"0P}) PP (P 0P P (22)

D= [d‘;—(s) e dl;ff) azw] (23)
Q= [vec {elelT} ,...,Vec {epef}] (24)
P= [vec <i>1} o ,vec{<i>(ML)2 }] (25)
&=Q %, (26)
U=qQ'’U 27)
D=Q "’D (28)
R=Q '/’RQ™'/? (29)
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Fig. 1. Comparison between 2D-AML and SI-JADE vs SNR.

with PL%I being the orthogonal projector onto the column space of

U and e, is a vector whose p-th entry is the only nonzero element
as it equals 1. Details relative to the derivation of CRBa. are
provided in the Appendix.

5. SIMULATIONS

We illustrate the global performance of the 2D-AML estimator for
different values of SNR and number of collected snapshots. We
compare the 2D-AML algorithm to SI-JADE [2]. In the first sim-
ulation P = 3 paths are considered with @ = [—7°,0°,12°]7 and
T =[3,0,8]7 and an array of M = 2 sensors is used. The channel
length is assumed to be L = 32 symbol periods. The number of
collected snapshots is set to N = 100. The channel is estimated
over K = 20 slots. The results of the simulation are averaged
after 500 Monte Carlo runs. In the 2D-AML, an initial estimate
is obtained using 2D-MUSIC with Q = 1. SI-JADE employs a
joint diagonalization method referred to as the Q method [2]. The
results are very similar for the three paths, therefore only those
corresponding to the first path are shown. As expected, SI-JADE
provides erroneous estimates of the parameters as it undergoes se-
vere mis-modeling due to the non white additive noise. On the
other hand, 2D-AML approaches the CRB and exploits the favor-
able data model.For the above settings, convergence of 2D-AML
is achieved after a relatively small number of iterations.

In the second simulation, the same settings are applied for dif-
ferent vales of N. The Signal to Noise Ratio (SNR) is fixed at
10dB. SI-JADE again suffers a severe mis-modeling effect as it
expects a uniform Gaussian noise whereas 2D-AML approaches
the CRB for relatively low N.
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Fig. 2. Comparison between 2D-AML and SI-JADE vs N.

6. CONCLUSION

An alternative ML estimation method is presented for the JADE
problem. The algorithm is an extension to 2-D of AML and it ex-
ploits the shift invariance inherent in the data model. This shift
invariance allows the estimation of more paths than sensors. The
noise covariance matrix is assumed unknown and its Hermitian
structure is exploited. Robustness of the algorithm makes it possi-
ble to estimate the channel samples in a blind scheme.

7. APPENDIX

Considering the stochastic case, we define the vector of unknown
parameters as follows

n= [aTerT:qT]T (30)

where o = [87, 77]T, is the vector of the parameters of interest
and rg = [Re(rg”), Im(rg™)]” is the L2-dimensional vector
defined in (16), of the real parameters of the covariance matrix Rg
of the fading coefficients. The elements of the Fisher Information
Matrix (FIM) are given by [7, 8]

31)

[F]i,; = Ktrace {R‘1 OR p-1 6—R}

on; Onj

In the following, we summarize the derivation of all the blocks of
the FIM. Note that

oR OR OR
_[oR 32
doy; 09;’ an] (32
with g;‘ = DyeielRpU” + URgeie’ D) (33)
glj = D.,e;e; ReU” + URge;e; DY (34)
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and
da(6) da(0)
Dyg=Fo ey (35)
[ de o—6 do 9=6p
df(r) df(r)
D, = . A
[ dr T=T71 dr T=Tp ° (36)

We define D = [Dy, D-]. Using results of [7, 8, 10] and applying
properties of the vec {.} and trace {.} operators several times, it is
straightforward to show that

Foa = KET [DT ® (RBUH) + (RBTUT) ® DH]
. [(R*)‘1 ® R_l]

. [DT®(RBUH)+(RBTUT)®DH]H£ @37)

)

aRR_l a_RR—1/2
0qi 0q;
a_QR—l a_QR—l/2
0qi 0q;
Ktrace {R™/°®:R™'&,R™"/*}

Let us introduce the matrix
OR _ _
1
—R
0q;

10R

[Faal;; Ktrace {R’ 90
J

Ktrace {R_l/2

)
j

Again, using results of [7, 8, 10] and applying properties of the
vec {.} and trace {.} operators, we obtain the following

Ktrace {R_l/2

(38)

Faa=KP"[R) @R P (39)
where P was defined in Section 4.

Note that Rg has a Hermitian structure and is completely un-
known. This suggests that Rg can be written as a linear combina-
tion of base matrices, in the same way as Q, i.e,

P2

RB = ZI‘Bde
d=1

(40)

Thus, similarly to the derivation of [Fqq]; ;, we define the follow-
ing

_1 0R __; OR
[Frersl; Ktrace {R 181_]3‘ 181-3-}
i J
= Ktrace{R‘l/zaar—RR‘lg‘—RR‘l/z}
B Bj
= Ktrace {ﬁaRB gy dRe ﬁH}
aI‘Bl BrBJ
T
= kv { |o2BRgH vec { 1 2BB g7
61‘]31 al‘BJ
o T .
= KvecT{[U@UH] }vec {U<I>]UH} (41)
Similarly to (39), we obtain
Fearn = KPE [UT 0 U] [R) ™ @R[ [U" 0 U] Ps
(42)

wherePp = [vec {(fl} ,...,Vec {<i>P2 }] .
From the above derivations, the cross terms are obtained in a

straightforward way (see[10] for details). Applying the partitioned
matrix inversion formula [8], we obtain

CRB.. = Faa+Fars (Frars — FroaFasFars) |
. (FreaFaqFrua)
+Faq (Faa — Fars Friten Frna)
- (Fars Frarp Faa) (43)

Finally, applying results of [10] directly to (43) leads to the closed
form expression (20).
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