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ABSTRACT 

 
The problem of detecting the number of sources impinging on an 
array of sensors has received wide interest in many research 
problems. In particular, the detection of the number of distinct 
neural sources using a recording array of closely spaced sensors 
in the brain is one such application. The special case of transient 
source signals of unknown waveforms corrupted by Gaussian 
noise is the focus of this paper. We propose a new approach for 
solving this problem when no apriori knowledge is given about 
the neural sources and/or the noise processes. By extending our 
previous array multiresolution analysis framework for noise 
suppression, signal detection and identification [1-4], we show 
that it is feasible to achieve reasonable source detection 
performance in moderate to low SNR scenarios. Comparison to 
traditional detection schemes is presented. 
 

1. INTRODUCTION 
 

The problem of determining the number of sources impinging on 
an array of sensors is a traditional problem in array processing 
often referred to “source detection”. Termed as a model order 
selection problem, Akaike’s Information Criterion (AIC) and 
Rissanen’s Minimum Description Length (MDL) criterion are the 
most widely known information theoretic methods to solve this 
problem [5-6]. Variants of these two methods led researchers to 
develop numerous techniques to cope with specific cases where 
these methods have yielded overestimation or underestimation of 
the number of sources [7-11]. The original hypothesis testing 
approach to the problem derived from the statistical literature is a 
sphericity test [12], that sequentially tests for equality of the 
smallest eigenvalues, presumably attributed to the noise subspace. 
 
The challenge in detecting the number of sources becomes greatly 
complicated when the source signals are either correlated, weak, 
or closely spaced and the sample size is limited. Moreover, if the 
noise corrupting the observations is colored or inherently 
correlated with the signals of interest, then the detection task 
becomes cumbersome and almost all existing techniques yield 
significant performance degradation. As an example, consider 
detecting the number of neural cells in a neural cell population 
using an array of closely spaced electrodes [13]. The main 
characteristics of such neurophysiological signal environment can 
be summarized as follows: 
1- Multiple neural sources are present with various strengths, and 

their waveforms exhibit significant correlation and coherence 
structures as illustrated in Fig.1. 

2- If the recording array is closely spaced, which is the typical 
case for the purpose of understanding interaction in small 

neural cell populations, the noise process exhibit significant 
spatial correlation. 

3- Since a major component of the noise process is attributed to 
the background activity of neural sources far from the array, 
the noise tends to be temporally correlated and cross-correlated 
with the signal of interest. 

 
In a neurophysiological context, one needs to know how many 
cells constitute the mixture recorded by the array of electrodes, 
which eventually leads to better understanding of neural function 
and connectivity. In almost all existing source detection 
algorithms, it is always assumed on one hand that source signals 
are statistically independent and have a positive definite 
covariance matrix, i.e., none of the signals are perfectly coherent. 
On the other hand, the noise is assumed white and statistically 
independent of the source signals. Clearly, these assumptions 
render existing algorithms inapplicable to the application at hand 
and to other array processing applications where similar 
characteristics are encountered.  
 
We adopted a novel application driven framework in [1-4] for 
performing typical array signal processing tasks such as noise 
suppression, signal detection and source separation in the 
multiresolution domain obtained by means of the Discrete 
Wavelet Transform (DWT). The work we present here is a natural 
extension to this framework. The only assumption under which 
we carry out analysis is the Gaussian nature of the noise. 
 

2. THEORY 
 
2.1. Problem Statement 
 
The array model in the time domain assumes the presence of P 
sources impinging on an M-channel array according to 

 ZASY +=      (1) 

where NM ×ℜ∈Y denotes the multichannel observations in the 
sampled time interval nTt = , where n is an integer, 

MxPℜ∈A denotes the mixing (steering) matrix, NP×ℜ∈S  

denotes the source signal matrix, and NM ×ℜ∈Z  denotes an 
additive Gaussian noise component with nontrivial temporal and 
spatial covariance matrices. It will be assumed that within the N 
snapshots consisting the analysis window, no more than MP ≤  
sources are present. 
 
The matrix S is full rank when all the P sources are independent. 
When S is rank-deficient, this usually means that either the source 
signals have correlated waveforms, or a subset of the signals are 
perfectly coherent, i.e., at least one of the signals is just a scaled 
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and delayed version of another signal. This type of situation 
arises when the multipath phenomenon occurs, i.e., a direct signal 
path and one or more indirect paths are received by the array in 
which case the signals are not independent. On the other hand, the 
columns of the matrix A represent the array response due to each 
of the P signals impinging on the array. Each column depends 
only on the geometrical construction of the array and the 
directional response of the sensors. Generally speaking, if the 
array is properly designed and the sources are independent and 
treated as point sources, A will be full rank. A can also be rank 
deficient when the propagating medium has nonstationary 
characteristics, or in some sense anisotropic. This situation can 
very likely arise in a neurophysiological experiment [14]. 
 
First, consider the noise free observations given by the product 
matrix ASX =  . If A or S has rank less than P, X will also have 
rank less than P. If there are NMP ≤≤  independent rows in X, 
then this matrix is said to have a P-dimensional range or row 
space, which is a subspace of the M-dimensional Euclidean space 

Mℜ . The rank of this matrix is the dimension of this subspace. 
The spatial covariance of X when spectrally factored yields 

 [ ] TTE XXXX UDUXXR ..==      (2) 

where MxM
X ℜ∈D  is a diagonal matrix containing the rank 

ordered eigenvalues 0...... 121 ===>>>> + MPP δδδδδ  of 

XR . If there are P signal sources, the largest P eigenvalues 
correspond to the P sources and the first P columns of the unitary 
matrix XU  span the signal subspace. The remaining M-P 
eigenvalues are equal to zero with probability one. In practice, the 
finite sample size and the presence of noise amount to estimating 
the sample eigenvalues 0......1 >>>>> MP λλλ  from the 
sample covariance matrix  
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The remaining M-P eigenvalues no longer equal to zero and the 
corresponding M-P eigenvectors span the noise subspace. When 
the noise is cross correlated with the signal of interest, YR  can be 
expressed as 

T
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The presence of the cross covariance terms shrinks the separation 
distance that should be observed to determine the subset of 
eigenvalues belonging to the signal subspace because of the 
mutual correlation of the sample eigenvalues, making it 
practically impossible to determine P. 
 
2.2. Source Detection  
 
In good SNR conditions, the separation between the signal and 
noise subspaces is easily obtained. However, in low SNR 
conditions, this separation do not yield easily and the source 
detection problem amounts to the so-called sphericity test [15] to 
determine the multiplicity of the smallest M-P eigenvalues using 
the likelihood function 

∑

∏

=

+−

=

+−










=Λ M

pi
i

pM
M

pi
i

pM
λ

λ

1
1

)11(

 p =1, …, M-1  (5) 

which is the ratio of the geometric mean to the arithmetic mean of 
the smallest M-p+1 sample eigenvalues. The sphericity test 
evaluated in the time domain tends to underestimate the number 
of sources when the source signals are correlated due to the 
presence of small signal eigenvalues that are indistinguishable 
from the noise eigenvalues (multipath situation for instance). 
 
2.3. Source Detection in the Multiresolution Domain 
 
Exploring the array model in the multiresolution domain has 
shown to provide significant advantages over the time domain 
analysis, especially in the correlated signal and noise 
environments, which are the main focus of this paper [13]. 
Denoting by MxN

j ℜ∈Y  the multichannel coefficient matrix 

describing the stationary Discrete Wavelet Packet Transform 
(DWPT) in the jth node of the wavelet binary tree up to L levels1 
[16], then by the linearity of the transform 

jjj ZXY +=
  

  (6) 

The covariance of jY  can be spectrally factored yielding 
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In the wavelet domain, it was shown that each source can be 
characterized by a pruned binary tree describing the best basis for 
that source [3-4], by searching the full DWPT tree for the 
eigenvalue/eigenvector pair that remains invariant throughout the 
full wavelet decomposition, i.e., an invariant j

SU  that spans the 
same subspace spanned by the columns of the steering matrix A. 
Depending on the span of wavelet basis in the jth  subband, at 
most the first P columns of j

YU  span the signal subspace, while 

at least the smallest M-P eigenvalues of j
YD  are nonzero with 

probability one and the corresponding M-P eigenvectors of  j
YU  

span the noise subspace. Let pj denotes the dimension of the 
signal subspace in the jth  node, then the ith eigenvalue/eigenvector 
pair in the spectral factorization of j

YR  in (7) will be the 
dominant mode in the jth node if and only if 

Pki jk ,,1)max(arg K=><= bs   
(8) 

where >⋅<  denotes a dot product and jb  denotes the wavelet 

basis spanning the jth subband. The Multiresolution Sphericity 
Test (MRST) for equality of the smallest eigenvalues can be 
formulated as 
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1 For an L level DWPT binary tree, there is a total of 2(L+1)-1 nodes 
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where now the likelihood function is indexed by j, the subband 
index. The sphericity test formulated in (9) can be used to 
determine how many sources Pp j ≤  are projected onto the 

subspace spanned by the wavelet basis in the jth node. The test 
takes the form of a series of nested hypothesis tests, testing 

jpM −  eigenvalues for equality; the hypotheses are of the form 
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We are interested in finding the smallest value of jp  for which 

)(0 jpH is true, which is done by testing 1,0 == jj pp  … until 

1−= Mp j
or the test does not fail, i.e., )(0 jpH  is determined 

to be true. Using a desired performance threshold for the 
probability of false alarm (overdetermination of jp ), a set of 

Pp j ≤  dominant modes is obtained for each node and these are 

described by their corresponding rank ordered jp  eigenvectors. 

To estimate P, we form the augmented matrix A  by 
concatenating all the eigenvectors from all the sphericity tests in 
(9), Jj ,,1,0 K=∀  where J is the total number of nodes, in 

the columns of  A , i.e., 

[ ]J
p

JJ
pp J

uuuuuuuuuA ............ 21
11

2
1
1

00
2

0
1 10

=
       

(11) 

where j
iu denotes the ith dominant eigenvector in the jth node. The 

final step to estimate P is to test for dependent columns, which is 

equivalent to determine the rank of A , i.e.,  

)(ˆ ArankP =        (12) 

The estimate of P is shown to be consistent from the results we’ll 
present in the next section. Due to the lack of space, a formal 
proof of consistency is reported in [18]. 

 

3. RESULTS 
 

For the purpose of performance evaluation, the aforementioned 
technique was applied to simulated multichannel neural 
recordings. The signals used in the simulations consisted of 
template neural spike waveforms extracted from experimental 
data. The multiple events for each source were sorted using the 
technique reported in [2] and averaged to reduce noise. We used 
up to five distinct spike waveforms as illustrated in Fig.1. The 
noise used was extracted from signal free observations from the 
same experiments from which spike templates were extracted. 
Typically, we had M = 16 channels, N is in the order of a few 
thousands snapshots. Each analysis window was chosen so that 
the number of distinct sources may not exceed the number of 
channels processed simultaneously. A subset of the number of 
snapshots of noisy 16 channel data is illustrated in Fig.2. From 
these illustrations, it is clear that the source signals possess a high 
degree of temporal correlation and coherence across channels.  
 
Performance was assessed using Monte Carlo simulation and 
compared to MDL and AIC. Fig. 3 illustrates the performance for 
the AIC criterion, MDL criterion, and our proposed Multi-

Resolution Sphericity Test (MRST) method for two SNR 
conditions. Clearly, the AIC has the lowest performance 
compared to all the other methods. The MRST outperforms both 
the MDL and the AIC. Moreover, the estimates are consistent as 
the number of snapshots becomes large and the superiority of the 
proposed MRST remains intact despite degradation in SNR. 
  

4. CONCLUSION 
 

We have introduced a new technique to determine the number of 
sources in a multichannel correlated signal and noise 
environments. The technique is based on estimating the signal 
subspace dimension in each subband of the wavelet 
decomposition using a sphericity test for the equality of the 
smallest rank ordered eigenvalues. The source detection was 
accordingly performed in each subband separately whereby 
allowing each source signal to be projected onto the subspace 
spanned by the corresponding wavelet basis in each subband. 
This enabled each source to have a variable mode strength in each 
node, thereby permitting extra degrees of freedom for the 
sphericity test to asymptotically attain a desired performance by 
minimizing the probability of miss (underestimation of the 
number of sources). The probability of false alarm 
(overestimation of P) was minimized by rank reduction of an 
augmented matrix containing all the dominant eigenvectors in all 
subbands, thus eliminating redundant eigenvectors from the 
signal subspace estimates. 
 
One additional advantage gained is the tolerance allowed for 
erroneous decisions in the sphericity tests. If a noise component 
predominates in a certain subband to the extent of masking a 
weak source, then the sphericity test may underestimate P in that 
subband. In this case, the overall estimate of P is minimally 
affected due to the fact that this source may be better represented 
in another subband where the noise has less masking effect, 
thereby amounting to a stronger mode that will depend on how 
much correlation exists between that source and the 
corresponding wavelet basis. The thresholds for the sphericity 
tests are determined using the fact that the likelihood function in 
eq.(5) statistically approaches a Chi-square distribution with 

1)( 2 −− pM  degrees of freedom. One limitation currently under 
investigation is the perturbations to the eigenvectors under 
severely low SNR (< 4 dB in neural environment) composing the 

augmented matrix A  that may cause overestimation of the rank. 
Nevertheless, the performance was significantly improved in 
moderate to low SNR over existing methodologies. 
 
To sum up, the source detection technique introduced in this work 
has some clear advantages over existing source detection 
techniques in correlated signal and noise environments. Existing 
source detection schemes in the case of correlated noise assume 
the noise covariance to be either known, or can be estimated 
reliably, or have certain banded structure [8]. Other schemes 
developed for coherent signals [7,9] assume that the mixing 
matrix is known and that it is full rank. In our case, these 
assumptions are invalid due to the nature of the neural signal 
environment discussed earlier. We’ve also demonstrated the 
robustness to degradation in SNR, which is a desirable feature in 
case of weak source presence. Current work is aimed to assess the 
performance using sub-array processing to speed up the 
computational load. 
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Fig. 3. Probability of Detection error vs. the number of 
array snapshots for the AIC, MDL and MRST.  

 

 
Fig. 1. Source spatial distribution for five distinct neural 

sources extracted from the same neural recording 
experiment at different occurrence times from a subarray of 

4 channels of a 16 channel array of electrodes. 

Fig. 2. A noisy subset of array snapshots (25 msec. at a 
sampling rate of 20 KHz) for a 16 channel array 
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