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ABSTRACT

The problem of detecting the number of sources impinging on an
array of sensors has received wide interest in many research
problems. In particular, the detection of the number of distinct
neural sources using a recording array of closely spaced sensors
in the brain is one such application. The special case of transient
source signals of unknown waveforms corrupted by Gaussian
noise is the focus of this paper. We propose a new approach for
solving this problem when no apriori knowledge is given about
the neural sources and/or the noise processes. By extending our
previous array multiresolution analysis framework for noise
suppression, signal detection and identification [1-4], we show
that it is feasible to achieve reasonable source detection
performance in moderate to low SNR scenarios. Comparison to
traditional detection schemes is presented.

1. INTRODUCTION

The problem of determining the number of sources impinging on
an array of sensors is a traditional problem in array processing
often referred to “source detection”. Termed as a model order
selection problem, Akaike’s Information Criterion (AIC) and
Rissanen’s Minimum Description Length (MDL) criterion are the
most widely known information theoretic methods to solve this
problem [5-6]. Variants of these two methods led researchers to
develop numerous techniques to cope with specific cases where
these methods have yielded overestimation or underestimation of
the number of sources [7-11]. The original hypothesis testing
approach to the problem derived from the statistical literature is a
sphericity test [12], that sequentially tests for equality of the
smallest eigenvalues, presumably attributed to the noise subspace.

The challenge in detecting the number of sources becomes greatly
complicated when the source signals are either correlated, weak,
or closely spaced and the sample size is limited. Moreover, if the
noise corrupting the observations is colored or inherently
correlated with the signals of interest, then the detection task
becomes cumbersome and almost all existing techniques yield
significant performance degradation. As an example, consider
detecting the number of neural cells in a neural cell population
using an array of closely spaced electrodes [13]. The main
characteristics of such neurophysiological signal environment can
be summarized as follows:

1- Multiple neural sources are present with various strengths, and
their waveforms exhibit significant correlation and coherence
structures as illustrated in Fig.1.

2-If the recording array is closely spaced, which is the typical
case for the purpose of understanding interaction in small
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neural cell populations, the noise process exhibit significant
spatial correlation.

3-Since a major component of the noise process is attributed to
the background activity of neural sources far from the array,
the noise tends to be temporally correlated and cross-correlated
with the signal of interest.

In a neurophysiological context, one needs to know how many
cells constitute the mixture recorded by the array of electrodes,
which eventually leads to better understanding of neural function
and connectivity. In almost all existing source detection
algorithms, it is always assumed on one hand that source signals
are statistically independent and have a positive definite
covariance matrix, i.e., none of the signals are perfectly coherent.
On the other hand, the noise is assumed white and statistically
independent of the source signals. Clearly, these assumptions
render existing algorithms inapplicable to the application at hand
and to other array processing applications where similar
characteristics are encountered.

We adopted a novel application driven framework in [1-4] for
performing typical array signal processing tasks such as noise
suppression, signal detection and source separation in the
multiresolution domain obtained by means of the Discrete
Wavelet Transform (DWT). The work we present here is a natural
extension to this framework. The only assumption under which
we carry out analysis is the Gaussian nature of the noise.

2. THEORY

2.1. Problem Statement

The array model in the time domain assumes the presence of P
sources impinging on an M-channel array according to

Y=485+7 1)

where ¥ € RV denotes the multichannel observations in the
sampled time interval ¢=pn7, where n is an integer,

A e R denotes the mixing (steering) matrix, § € R

denotes the source signal matrix, and Z € R**" denotes an
additive Gaussian noise component with nontrivial temporal and
spatial covariance matrices. It will be assumed that within the N
snapshots consisting the analysis window, no more than P <M
sources are present.

The matrix § is full rank when all the P sources are independent.
When § is rank-deficient, this usually means that either the source
signals have correlated waveforms, or a subset of the signals are
perfectly coherent, i.e., at least one of the signals is just a scaled
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and delayed version of another signal. This type of situation
arises when the multipath phenomenon occurs, i.e., a direct signal
path and one or more indirect paths are received by the array in
which case the signals are not independent. On the other hand, the
columns of the matrix A4 represent the array response due to each
of the P signals impinging on the array. Each column depends
only on the geometrical construction of the array and the
directional response of the sensors. Generally speaking, if the
array is properly designed and the sources are independent and
treated as point sources, A will be full rank. A can also be rank
deficient when the propagating medium has nonstationary
characteristics, or in some sense anisotropic. This situation can
very likely arise in a neurophysiological experiment [14].

First, consider the noise free observations given by the product
matrix X = A4S . If A or § has rank less than P, X will also have
rank less than P. If there are P < M < N independent rows in X,
then this matrix is said to have a P-dimensional range or row
space, which is a subspace of the M-dimensional Euclidean space

RM . The rank of this matrix is the dimension of this subspace.
The spatial covariance of X when spectrally factored yields

R, =E[xx"]=v, D, U, ¢)
where D, € R™" is a diagonal matrix containing the rank
ordered eigenvalues &, >0, >...> 9, >0p, =...=0,, =0 of

RX. If there are P signal sources, the largest P eigenvalues
correspond to the P sources and the first P columns of the unitary
matrix U, span the signal subspace. The remaining M-P

eigenvalues are equal to zero with probability one. In practice, the
finite sample size and the presence of noise amount to estimating
the sample eigenvalues A >..>A,>..>A4, >0 from the

sample covariance matrix
= LS iy )
Ry=—> ylnly'[n]
Nn=0

The remaining M-P eigenvalues no longer equal to zero and the
corresponding M-P eigenvectors span the noise subspace. When

the noise is cross correlated with the signal of interest, R, can be
expressed as

R,=ARA" +R, + AR, + R, A" )

The presence of the cross covariance terms shrinks the separation
distance that should be observed to determine the subset of
eigenvalues belonging to the signal subspace because of the
mutual correlation of the sample eigenvalues, making it
practically impossible to determine P.

2.2. Source Detection

In good SNR conditions, the separation between the signal and
noise subspaces is easily obtained. However, in low SNR
conditions, this separation do not yield easily and the source
detection problem amounts to the so-called sphericity test [15] to
determine the multiplicity of the smallest M-P eigenvalues using
the likelihood function

u (1/M—p+1)
i=p

1 M

LI N

M-p+1 IZ[; !

which is the ratio of the geometric mean to the arithmetic mean of

the smallest M-p+] sample eigenvalues. The sphericity test

evaluated in the time domain tends to underestimate the number

of sources when the source signals are correlated due to the

presence of small signal eigenvalues that are indistinguishable
from the noise eigenvalues (multipath situation for instance).

A=

2.3. Source Detection in the Multiresolution Domain

Exploring the array model in the multiresolution domain has
shown to provide significant advantages over the time domain
analysis, especially in the correlated signal and noise
environments, which are the main focus of this paper [13].

Denoting by Y/ e RYY the multichannel coefficient matrix
describing the stationary Discrete Wavelet Packet Transform

(DWPT) in the j” node of the wavelet binary tree up to L levels'
[16], then by the linearity of the transform

Y =X +2, 6)
The covariance of ¥ ; can be spectrally factored yielding

R} = E[Y Y/ 1=U]DJU] )

In the wavelet domain, it was shown that each source can be
characterized by a pruned binary tree describing the best basis for
that source [3-4], by searching the full DWPT tree for the
eigenvalue/eigenvector pair that remains invariant throughout the

full wavelet decomposition, i.e., an invariant U ; that spans the

same subspace spanned by the columns of the steering matrix A.
Depending on the span of wavelet basis in the /™ subband, at

most the first P columns of U ; span the signal subspace, while
at least the smallest M-P eigenvalues of DI’,' are nonzero with

probability one and the corresponding M-P eigenvectors of U }’,

span the noise subspace. Let p; denotes the dimension of the

signal subspace in the /™ node, then the i eigenvalue/eigenvector

pair in the spectral factorization of R'}’; in (7) will be the
dominant mode in the /* node if and only if

i=argmax(<sb, >) k=1..,P (3)
where <-> denotes a dot product and b/, denotes the wavelet

basis spanning the j* subband. The Multiresolution Sphericity
Test (MRST) for equality of the smallest eigenvalues can be
formulated as

u (I/M—p,+])
A =

i=p;

J 1 M
724
M-p,+15

! For an L level DWPT binary tree, there is a total of 2*"”-1 nodes
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where now the likelihood function is indexed by j, the subband
index. The sphericity test formulated in (9) can be used to
determine how many sources p; < P are projected onto the

subspace spanned by the wavelet basis in the j” node. The test
takes the form of a series of nested hypothesis tests, testing
M — P, eigenvalues for equality; the hypotheses are of the form

H(p): 2220, =4, ,=..=4,
H (p): 22200, 24, >4, (10)

We are interested in finding the smallest value of P, for which
Hy(p,) is true, which is done by testing p,=0,p, =1 until
p, =M —1lor the test does not fail, i.e., Ho(p/_) is determined

to be true. Using a desired performance threshold for the
probability of false alarm (overdetermination of P, ), a set of

P, < P dominant modes is obtained for each node and these are

described by their corresponding rank ordered D, eigenvectors.

To estimate P, we form the augmented matrix A by
concatenating all the eigenvectors from all the sphericity tests in
9), V j=0,1,...,J where J is the total number of nodes, in

the columns of 4, i.e.,

41,00 0 11 1 J J J
A —[“1 Uy ol Uy Uy iU, o U] U ...upj] (11)

where u[j denotes the i dominant eigenvector in the j” node. The
final step to estimate P is to test for dependent columns, which is

equivalent to determine the rank of Z ,i.e.,
P = rank(A4) (12)

The estimate of P is shown to be consistent from the results we’ll
present in the next section. Due to the lack of space, a formal
proof of consistency is reported in [18].

3. RESULTS

For the purpose of performance evaluation, the aforementioned
technique was applied to simulated multichannel neural
recordings. The signals used in the simulations consisted of
template neural spike waveforms extracted from experimental
data. The multiple events for each source were sorted using the
technique reported in [2] and averaged to reduce noise. We used
up to five distinct spike waveforms as illustrated in Fig.1. The
noise used was extracted from signal free observations from the
same experiments from which spike templates were extracted.
Typically, we had M = 16 channels, N is in the order of a few
thousands snapshots. Each analysis window was chosen so that
the number of distinct sources may not exceed the number of
channels processed simultaneously. A subset of the number of
snapshots of noisy 16 channel data is illustrated in Fig.2. From
these illustrations, it is clear that the source signals possess a high
degree of temporal correlation and coherence across channels.

Performance was assessed using Monte Carlo simulation and
compared to MDL and AIC. Fig. 3 illustrates the performance for
the AIC criterion, MDL criterion, and our proposed Multi-

Resolution Sphericity Test (MRST) method for two SNR
conditions. Clearly, the AIC has the lowest performance
compared to all the other methods. The MRST outperforms both
the MDL and the AIC. Moreover, the estimates are consistent as
the number of snapshots becomes large and the superiority of the
proposed MRST remains intact despite degradation in SNR.

4. CONCLUSION

We have introduced a new technique to determine the number of
sources in a multichannel correlated signal and noise
environments. The technique is based on estimating the signal
subspace dimension in each subband of the wavelet
decomposition using a sphericity test for the equality of the
smallest rank ordered eigenvalues. The source detection was
accordingly performed in each subband separately whereby
allowing each source signal to be projected onto the subspace
spanned by the corresponding wavelet basis in each subband.
This enabled each source to have a variable mode strength in each
node, thereby permitting extra degrees of freedom for the
sphericity test to asymptotically attain a desired performance by
minimizing the probability of miss (underestimation of the
number of sources). The probability of false alarm
(overestimation of P) was minimized by rank reduction of an
augmented matrix containing all the dominant eigenvectors in all
subbands, thus eliminating redundant eigenvectors from the
signal subspace estimates.

One additional advantage gained is the tolerance allowed for
erroneous decisions in the sphericity tests. If a noise component
predominates in a certain subband to the extent of masking a
weak source, then the sphericity test may underestimate P in that
subband. In this case, the overall estimate of P is minimally
affected due to the fact that this source may be better represented
in another subband where the noise has less masking effect,
thereby amounting to a stronger mode that will depend on how
much correlation exists between that source and the
corresponding wavelet basis. The thresholds for the sphericity
tests are determined using the fact that the likelihood function in
eq.(5) statistically approaches a Chi-square distribution with
(M — p)* —1 degrees of freedom. One limitation currently under

investigation is the perturbations to the eigenvectors under
severely low SNR (< 4 dB in neural environment) composing the

augmented matrix A that may cause overestimation of the rank.
Nevertheless, the performance was significantly improved in
moderate to low SNR over existing methodologies.

To sum up, the source detection technique introduced in this work
has some clear advantages over existing source detection
techniques in correlated signal and noise environments. Existing
source detection schemes in the case of correlated noise assume
the noise covariance to be either known, or can be estimated
reliably, or have certain banded structure [8]. Other schemes
developed for coherent signals [7,9] assume that the mixing
matrix is known and that it is full rank. In our case, these
assumptions are invalid due to the nature of the neural signal
environment discussed earlier. We’ve also demonstrated the
robustness to degradation in SNR, which is a desirable feature in
case of weak source presence. Current work is aimed to assess the
performance using sub-array processing to speed up the
computational load.
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Fig. 1. Source spatial distribution for five distinct neural
sources extracted from the same neural recording
experiment at different occurrence times from a subarray of
4 channels of a 16 channel array of electrodes.
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Fig. 2. A noisy subset of array snapshots (25 msec. at a
sampling rate of 20 KHz) for a 16 channel array
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Fig. 3. Probability of Detection error vs. the number of
array snapshots for the AIC, MDL and MRST.




