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ABSTRACT

This paper presents the theoretical accuracy limits of
the geolocation algorithms based on TOAs measure-
ments exploiting the fact that the mobile is moving in
a known or unknown direction. The developed expre-
sions show us the possible improvements in terms of
accuracy and/or availability due to the diversity cre-
ated with the movement. A simple algorithm based on
the use of TOAs drift estimation is also presented in
order to compare its performance with the developed
theoretical limits. The proposed estimator attains the
theoretial limits under certain conditions.

1. INTRODUCTION

A problem of growing importance in mobile communica-
tion networks is estimating the position of mobile terminals.
One of the most common approaches is getting a position
estimation by combining several time of arrival (TOA) or
time difference of arrival (TDOA) measurements amongst
a set of references which are normally base stations and/or
satellites [5],[1]. The major problems in this approach are
the non-linear relationship between measurements (TOA or
TDOA) and position parameters (Cartesian coordinates)
and the limited availability of base stations, specially in
rural environments.

In static scenarios, where the mobile is not moving,
there is a minimum number of references needed to com-
pute a valid position and the dilution of precision (DOP) is
determined by the geometry of the mobile and reference po-
sitions. In dynamic scenarios, the movement of the mobile
generates a diversity that can be exploited. This diversity
can both reduce the minimum number or references and/or
improve the accuracy of the algorithm. In fact, the DOP
is also modified by the presence of movement. Concretely,
a complete knowledge of the mobile speed improves the ac-
curacy of the position estimate and the availability of the
algorithm. In the recent literature, several articles have pre-
sented the usage of the satellite speed knowledge to improve
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the position accuracy and/or availability [2]. This approach
is similar to the one presented in this paper.

This paper presents the Cramer Rao Lower Bound (CRLB)

of the accuracy in location applications based on TOA mea-
surements when the mobile is moving in a certain direc-
tion. Later, for space reasons we develop the expression
of the CRLB of the position estimation in the specific case
of a complete knowledge of the speed. This approach can
be applied to the case of the location algorithm assisted
with an inertial sensor system that can supply the speed of
the mobile and its direction (compass is required). Finally,
we show a simple efficient location algorithm based on the
TOA and drift measurements that can attain the developed
CRLB under certain conditions.

2. CRLB OF THE POSITION ACCURACY

In this section we develop the CRLB of the position estima-
tion using as information the TOA measurements coming
from L references (base stations) in the case that the mo-
bile is moving in a certain direction. First, let us assume
that a finite length window (K) is used to observe the TOA
measurements evolution delivered at a rate r (samples per
second). The available measurements of the I-th reference
can be expressed as follows:

toa; = [ toar 1 toar i ]T + 1y (1)

where toq;,, represents the TOA measurement of the I-th
reference at the n-th instant of time, n; is the noise added
vector and T denotes the transpose operation. For sim-
plicity reasons, it has been considered that TOA measure-
ments are provided in meters, this is all time measurements
are transformed into distance measurements. From this in-
formation, we can estimate the T'OA in the middle of the

used window (a) and its assoclated drift (d:) with a cer-

tain model. Logically the simplest estimation is performed
through the weighted least square (WLS) algorithm and
can be performed as follows:

H -1
[ zli } — (AHR;1A> AR; ' -toa; (2)
l

where the Ry = F [nl : an] and matrix A is given by:
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A=l L(k-12 - (K-1)2 3)
where a constant-drift model has been assumed. Logically,
this constant-drift model may not fit the real TOA measure-
ments evolution, so a higher order can be used achieving a
higher variance in the estimation of % and dAl but avoiding
any bias in the estimation [3].

Once the mean TOA (tAl) and the associated drift (dAl)
of the L references have been estimated without bias, the
non-linear relationship between these 21 parameters and
the parameters of interest in the location problem (position
and speed) can be expressed as follows:

t1 [ f(x,x1)
- 2 - :f(x,xL) - F(x,xf)
P= dl - g(X,S, Xl) = G(X7S7X%) e
L C/i\L ] L g(X7S7XL) d

(1)
where X is the mobile position, x; is the position of the I-th
reference (Xf‘ denotes the set of L reference positions), Niq
is the noise estimation vector resulting from (2) and the
scalar functions f and g can be expressed as:

Fx1) = [voq | (5)

g(x,8,%x1) = E’ -cos(4s — Ary z,) (6)

where r; o, is the vector from the mobile position to the
I-th reference position, s indicates the vector speed of the
mobile, r denotes the rate at witch the original TOA mea-
surements are delivered, | | denotes the module operation
and 4 indicates the angle of a vector in any Cartesian sys-
tem included in the plane defined by the vectors s and ry -, .
One way to compute the CRLB is through the linearization
of (4) as follows:

L 20
f(xo0,x Ox
p~ (%o, x1') o |+ e+ny (7)
g(x0,80,X7) og og
oxT asT

where xo and sp are the true values of the position and
T
speed to be estimated and e = | (x — Xo)T (s — So)T is the

error vector formed with the position and speed error. In
order to simplify the notation, we can rewrite the previous
expression as follows:

[ f(xo) C.. O
P~ [ g(x0,80) } [ cl, ci etnua (8)
P =~ p(xo,s0)+ Cle+ny

where the matrices CL, ng and Cgs represent the deriva-
tives shown in (7). Finally, the CRLB for the joint position
and speed estimation can be expressed as follows[4]:

R.— (CR;;CH> B (9)

where R4 1s the covariance matrix of the estimation of the
vector p, this is the variance of the elements of vector n.q,
and can be expressed as follows:

th = diag (Rt, Rd) (10)
R: = diag (U?h...,U?L)
R, — diag (0317...,0(2&) (11)

where O’?l is the variance of the estimation of the I-th TOA
and U?il is the variance of the I-th TOA drift in (2). Follow-
ing the generic expression of the CRLB shown in (9) and
the definition of the covariance matrices and linearization
matrices defined in (10) and (8), it is not difficult to show
that:

R, — ( CfoiC% + CexR;'CL, chRgllcgs > 1
CesRy Cox CesRy Cos
(12)
This last expression is, in fact, the Fisher information
matrix of the joint estimation of the speed and position.
Here, it is opened a new variant of problems where a partial
knowledge of speed can exploit the diversity created by the
mobile. Concretely, in this paper we will develop the CRLB
of the position estimation under a complete knowledge of
the speed. In this case, only the first element of the previous
matrix has to be inverted. So, the final CRLB for position
estimation is:

1 _ 1y -1
= (Rop+R: )
(13)
This last expression has been divided into two terms:
the classical covariance matrix produced by the use of the
estimated TOAs (R;Tl) and a new term that shows the
contribution of the use of the estimated TOA-drifts (R; é ) .
Now we can develop the expressions of these two terms in
the 2-Dimensional case assuming that the variance of the
TOA measurement of each reference is constant along the
observation window. To develop this expression, we have
to take the definition of f and g functions in (5) and (6),
the expression of linearization matrices of (7) and (8) and
the noise variance terms of (2).

R, — (cfo;lcg(JrchR;lch) B

L
R, = ZKU;Q T Ty (14)
=1
L 3 _—2 2 ;.2
_ Ko s|® /r ! 1 -
S DR R I L P R
=1 12 |rzvzl|
(15)

where Tz z, is the unitary vector in the direction between
mobile position and I-th base station position and L denotes
the perpendicular vector (assuming the 2-D case). Note
that the rate of the TOA measurements depends on the
coherence space and the speed of the mobile. In fact, the
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maximum value for the rate is limited by the time spent by
the mobile to cover the coherence space (Fmaz = |8| /deon)-

Equations (14) and (15) show that the effect of TOA es-
timations ( Ry, Tl) does not depend on the distance between
the mobile and the references but uniquely depends on the
geometry of the problem. Contrarily, the contribution of
the TOA-drift estimates ( R, 1:1)) depends on the relation-
ship between the speed and the distances between the refer-
ences and the mobile. This behavior is due to the fact that
the sensitivity of drift changes is inversely proportional to
the distance between the reference and mobile. Note also
that there is no contribution of the drift estimates if the
mobile is not moving or if the mobile is moving in the line
that links the mobile and the reference. This last behavior
is due to the fact that there is no difference in the TOA-drift
measurement in all the points of that line. Additionally it
can be seen the different evolution of both terms as a func-
tion of the window size. The cubic decreasing evolution of
the term R, 1:1) in front of the linear decreasing evolution of
R.! shows us that with a minimum size of the observation
window, the TOA-drift related term will dominate in the
estimation accuracy, so a nearly optimum algorithm based
only on drift measurements could be devised.

Finally, one of the most common way to check the min-
imum number of references needed to compute a valid posi-
tion is finding the number of references needed to produce
a full-rank inverse covariance matrix (Rz1)[6]. This as-
sures us that the position estimation presents a finite vari-
ance in all possible directions. In the particular case of a
2-Dimensional location problem, the inverse covariance ma-
trix is full-rank with the contribution of both terms (TOA
and TOA-drift) of a unique base station. Note that the
eigen-vectors of these two matrices are ortogonal following
the definition shown in (14) and (15) so full-rank condition
is assured. This means that if we can solve the ambiguities
that we will present in the next section, the mobile can be
located using uniquely one reference.

3. SIMPLE ESTIMATOR

In this section, we present a simple position estimator based
on the TOA measurements that exploit the knowledge of
the speed attaching the CRLB under certain conditions. If
we revise the expression of the CRLB developed, we will
realize that the two presented terms are related with the
contribution of the two kind of measurements: TOA and
TOA-drift. The estimator presented in this section com-
putes the position of the mobile using the TOA estimate
(E) and an estimation of the angle of the vector ry 5, based,
uniquely, on the TOA-drift estimate (c?l) Under the as-
sumption that all references and the mobile lie in a certain
plane, the relation between the angle of the vector Tz -, and

the TOA-drift is as follows:

ls|

The sign ambiguity corresponds to the two trajectories
that produce exactly the same TOA measurements evolu-
tion. This ambiguity has to be solved with a higher level
algorithm that performs, as maximum, a 2¥ search along

K/Fz\,zl = As & arccos (dl ; T) (16)

all possible combinations. Note that there are two possible
trajectories per reference, so there are a total of 2% possible
combinations. Once, the angle of the vector Ty z, has been
estimated, the proposed location algorithm with a unique
reference for the 2-Dimensional case can be expressed as:

. cos (K/f\le>
X =t- P (17)
sin (Lf'z@l)

This estimator has the same variance as the CRLB if
the model used in the WLS approach to estimate a and d;
does not produce bias. Once we have the estimation with a
unique reference, we can extend the algorithm to a generic
L reference algorithm only weighting the contributions of
all used references with the individual covariance matrices
as it follows:

L -1
o (Lrd) Ym0y
=1 =1

where R, 11 is the inverse of the CRLB expressed in (13) for
a unique reference.

The following section offers the performance analysis of
the proposed estimator compared with the CRLB.

4. PERFORMANCE ANALYSIS

This section shows an example of the application of the
proposed algorithm compared with the CRLB. The scenario
consists in a unique base station and a mobile moving in
a circular trajectory around the reference. This is a case
where the linear model can be used to estimate the TOA
and TOA-drift without bias, but we can extend the model
order to avoid the bias in the estimates a and dAl in a generic
trajectory.

Concretely we will simulate the case of a mobile termi-
nal moving in a circular trajectory around a base station at
a radius of 100 m at different speeds and with a TOA mea-
surement rate of 3 samples/sec. As it has been explained
before, the maximum rate is limited by the coherence space
and the speed of the mobile, so this assumption of the rate
is according to the coherence distance at a 900 Mhz radio
link and at the minimum assumed speed (1 m/s). Figure
(1) shows the variance in the individual estimation of the
TOA in the middle point of the observation window and
the TOA-drift as a function of the selected length for the
window.

The standard deviation of the original TOA has been
assumed to be 40 m. In this picture, it can be seen the
different evolution of the individual estimates. The TOA
estimate tends to a linear decrease and the TOA-drift esti-
mate tends to a cubic decrease. Now with theses estimates
in mind, we can apply the algorithm shown in the previous
section and compare its performance with the theoretical
limits. The following picture illustrates the evolution of the
mean squared error in the position system, this is the trace
of the covariance error matrix, as a function of the selected
time window, for a different speeds from 1 to 15 meters per
second.

In figure (2), it can be seen the variance evolution of the
position estimator as a function of the window size. It can
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Figure 1: Variance in the individual estimation process of
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Figure 2: Mean square error in the position estimation

be clearly seen that with a minimum size of the window, the
algorithm proposed achieves the CRLB. With smaller sizes
of the window, the variance in the angle estimation can not
be considered Gaussian distributed after the function cos !
in the expression (16), so the performance of the algorithm
does not attain the CRLB. This effect is the classical effect
in the phase estimation process when the SNR is not high
enough.

It can also be seen that with a small value of the window
the CRLB tends to infinite due to the fact, that in this sim-
ulation only one reference is considered and then, if there is
no contribution of the TOA-drift measurements the inverse
of the covariance matrix (13) tend to be rank-defficient, so
the covariance matrix tends to be infinity (not availability).
This situation is exactly the same as when no movement is
performed by the mobile.

5. CONCLUSIONS

This paper has developed the CRLB of the position accu-
racy in a dynamic scenario showing the possible diversity

created by the own movement of the mobile. Concretely,
it has been developed the CRLB in the case of a complete
knowledge of the mobile and it has been shown the improve-
ments in the accuracy and availability. It has been proven
that the estimation of the T'OA-drift with a linear or higher
order model reduces the CRLB of the position estimation
and generates a diversity that can be exploited to reduce
the minim number of references (normally base stations) to
yield a valid position. One of the easiest ways to under-
stand this point is the following reasoning. If the mobile is
moving in a completely known direction, this scenario is ex-
actly the same in witch a mobile is fixed and the references
are moving and their positions are always known. This sce-
nario generates diversity because the dilution of precision
(DOP) matrix is different at each instant of time and can
yield a valid position (finit covariance matrix). This diver-
sity collapses in the absence of movement case because the
DOP matrix is exactly the same in all instants of time and
then the diversity is not created.

The second part of this paper has presented a simple
algorithm to exploit the knowledge of the speed and the
estimated TOA-drift. This algorithm is based on the direct
transformation of the TOA-drift into an estimation of the
angle between the reference and the mobile position. A very
simple trajectory simulation has shown the performance of
the algorithm and the comparison with the CRLB. The
results show that with a minimum size of the observation
time window, the algorithm attaches the CRLB. It has been
also shown the different evolution of the estimates coming
from the use of the TOA estimates and from the TOA-
drift estimates. Finally, this simulation has also shown that
the minimum number of references in a location algorithm
based on TOA, this is two references, can be reduced with
a complete knowledge of the speed to a single one.
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