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ABSTRACT

The problem of retrieving spiral wave parameters
(frequency, radial velocity, and center location) using a
minimal number (4) of spatial sensors is considered. The
problem has the important application of localization of
spiral wave sources of atrial fibrillation from basket
catheter electrograms. Numerical simulations demonstrate
that our algorithm works effectively for a wide range of
parameters, and for spiral waves generated by a cellular
automaton model of cardiac wave propagation.

1. INTRODUCTION

Atrial fibrillation (AF) is a common cardiovascular
disease that affects nearly 1% of the population and up to
5% of the population over 80 years old [1]. A 2.5-fold
increase in AF cases is expected by the year 2050. AF is
associated with an increased risk of stroke and mortality,
impaired exercise tolerance, fatigue and heart failure. AF
is characterized by rapid (>400 beatsminute) irregular
electrical excitation of the atrial cardiac tissue leading to
inefficient pumping of blood from the atria to the
ventricles. While the precise physiological mechanisms of
initiation and maintenance of AF remain elusive [2] there
is increasing evidence that AF is driven by locaized
organized sources of electrical activity [2-3]. This has
been clinically observed and an important therapeutic
intervention of AF is tissue ablation [3-4], where alesion
is created with a specialized catheter using radiofrequency
energy in order to disrupt the electrical conduction from
an organized source of AF. Success of this therapy
depends critically on the ability to locate the source,
characterize the nature of the source and create a lesion
that interrupts electrical conduction from the source.
Therefore, significant improvements in AF therapy can be
gained by improving the ability to detect such sources.
The localized source hypothesis is but one of severa
hypothesized mechanisms of AF [5]. It has gained enough
acceptance, however, that part of clinical practice is to
map the electrical activity of the atria to locate a potential
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AF source. One method of clinical testing is to insert a
basket catheter (figure 1) into the atrium and measure the
electrical activity with electrodes at a number of spatial
locations (32 locations in the case considered here). While
most sources have been shown to originate from the
pulmonary veins [3], several other locations have also
been implicated [4]. These rotors are thought to represent
spiral waves, where the wave front propagation forms a
closed loop and electrical activation propagates away
from the center of rotation to excite the rest of the atrium.
While spiral waves have been observed in some animal
studies using optical mapping of excised hearts [6], they
are very difficult to identify in vivo, since a spiral waveis
very likely to be under-sampled with a basket catheter. In
order to locate the center of a spiral wave and determine
other parameters of the wave for an ablation procedure,
parametric models of the wave are required for any
estimation algorithm.
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Figure 1: Basket Catheter Electrodes

Our approach to developing signal analysis techniques for
better detection of sources of AF isto perform simulations
of hypothesized sources on a planar surface, utilizing the
cellular automaton (CA) modeling approach. The wave
behavior of interest can be sampled as signals at a small
number of locations, representative of electrode locations,
and then algorithms can be developed to determine the
parameters of the source. Validation of the algorithm is
conducted by utilizing the full information available from
the CA simulation.
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2.CELLULAR AUTOMATON MODELS

Cardiac tissue is classified as an excitable medium,
where a voltage excitation of sufficient magnitude
initiates cardiac wave propagation, a process where
individual cells “sense” the state of neighboring cells and
“fire” once neighboring cells fire. Once a cardiac cell
“fires’, it undergoes a sequence of physiological
processes that leads to contraction of the cell and
ultimately the whole atrium contracts. The idea behind
cellular automaton modeling is that an array of “cells’ is
defined as having a resting state and an excited state and
the cells are designed to transition from the resting to the
excited state based on the state of nearby cells. Wave
propagation is initiated in the array and the resulting wave
characteristics (wave speed, dispersion relationship, etc.)
emerge from the designated cell properties and the cell-
cell coupling. The resulting process very closely mimics
the wave behavior in excitable media, such as cardiac
tissue. Advantages of CA models are that they are much
simpler and faster than models based on differential
equations, because the underlying cellular mechanisms
need not be computed. CA models of myocardium have
actually been in existence for quite some time since the
pioneering work of Wiener and Rosenbluth [7]. and by
Moe et a. [8]. Over the last several decades, CA models
of excitable media have experienced a number of
developments and also occur in various forms. In our
work, we have adopted the CA agorithm given by
Gerhardt, et a. [9] (GST Algorithm). More recently, the
GST algorithm has been examined as one of severd
computational  approaches in  the  framework
computational biology [10] and has been implemented for
simulation of cardiac excitation pattern of a three-
dimensional anatomically correct heart [11].

The cellular automaton model consists of a planar
array of cells that contain two integer state variables, the

excitation variable, U, , that can take on the values of O or
1 and arecovery variable, V,, that consists of a refractory

period, a time over which the cell can not be re-excited
and a relatively refractory period where the cell can be
excited only with a sufficiently large excitation. The state

variables are
u, 0{0,2

v, 0{0,.... Vot

The excitation variable, U, , transitions from 0 to 1 when
the cell becomes excited. The recovery variable evolvesin
time according to the following set of rules, where Oup

@

and gy, ae integer step sizes that can be adjusted to
get different CA model behaviors.

min{vt +gup,Vmax}, ifu =1
max{vt_gdown’q ’ If ut :O

At each step in the simulation a defined neighborhood
of cells around each cell is examined and a given cell
becomes excited at the next time step if it is both
sufficiently recovered and if the number of cells in the

defined neighborhood exceeds a given threshold, k&ci Cf
the cell is in the relatively refractory state then the
excitability threshold is larger than k;d and is a linear

Vt+1 -

@

function of the recovery variable, V, . Finally, we adapt a

technique developed by Markus and Hess [12] to
eliminate the anisotropy inherent in CA models by
superimposing a small random “jitter” on the locations of
the center of the cellsin the rectangular array.

3. SPIRAL WAVE PARAMETER ESTIMATION

As pointed out in section 1, a spiral wave is spatially
under-sampled, therefore parametric methods must be

used to estimate its parameters. Let (X, Y,) (unknown)

be the center of the spiral wave, and (X, Y.) (known) be
the coordinates of the electrodes. First we introduce the
polar coordinate system with respect to (X, Y,) :

r=J(X=%)2 +(y —¥,)?
Y=Y ©)
X=X

then we model the spiral wave as Archimedean spiral [13]
in polar coordinates as

f(r,gt) =h(g-a,r —apt) @)

where h(s) is any 277 periodic function. The angular

@= arctan(

frequency of the wave is &), the separation between
successive turns (radial period) is 277/ a, , and the radial
velocity is ) / .
Let f, (t) be the signal acquired by the n'th electrode.
Then

fa(®) = T(r, @, 1) +w, (1) )

where W (t) is noise. Note that (r,,¢) ae

parameterized by (ry,¢) . The angular frequency @)
can be easily obtained by doing Fourier analysis of any
channel. To estimate (I, ¢) and @, consider the cross
correlation of two channels,
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The location of the correlation peaks can tell us the
relative delays between the two channels, subject to the
ambiguity of multiple periods. That is R,,(7) will reach

maximaat 7., when

(% _aOrm) _(% _aorn) :wOTrm +2ﬂkmn (7)
Here K., is an integer. Therefore, if we have 4 sensors

for a spiral wave, we could measure their relative time
delays by cross correlation, and have 3 independent

equations from (7). Suppose kmn can be determined

through other means and absorbed into 7., , then

_ B R,
aO == Ann(XOI yO) (8)
rm - rn
From (8) we may obtain the simultaneous nonlinear
equations

Am (% ¥0) = A (%, Yo), - (M) # (M, ') (9)
which could be used to solve (X,, Y,) - We seek the least
squares solution by minimizing the cost function

C(XO’ yO) = Z [Arm(XO’ yO) - Am’n’ (X01 yo)]2 (10)

(m,n)z(m’,n’)
The minimization can be carried out by gradient descent
or other standard optimization techniques. After (X,, Y,)

have been found, the estimate of &, can be obtained

through equation (8).
One final issue is the determination of Kk . In

principle k., cannot be determined uniquely from the

electrograms aone. This is essentialy the aliasing
phenomenon due to under-sampling. In our algorithm we

use different trial values of k_  to obtain possible

solutions. However, in our simulations, we are able to
resolve all ambiguous solutions by placing additional
restrictions on the spira wave parameters, such as not
allowing the center of the wave to be too far away from
the electrodes.

4. SSIMULATIONS AND DISCUSSIONS

In this section, we demonstrate the accuracy and
effectiveness of the proposed agorithm. Since there
would be no practical way to determine the ground truth
of spiral wave parameters of in vivo AF basket catheter
electrograms, we choose to use simulated electrograms to
test our algorithm.

4.1. Simulated Spiral Wave

Our first set of results pertains to estimating the angular
frequency, radial velocity and center coordinates of a

synthesized spiral. Here h(t) is chosen as a periodic
triangular pulse with &, =50 to simulate the rise and

fal of the signa voltage due to wave passage. An
example configuration of the four electrodes relative to
the synthesized spiral wave is shown in figure 2.

1 150

150 \.

Figure 2: Electrode locations for spiral wave estimation

.

Table 1 shows a range of synthesized spiral wave
parameters and their estimates by the algorithm. We
observe that in all cases the parameters have been
correctly recovered to within good accuracy.

Table 1: Spiral wave parameters and their estimates

ao [Xo’yo] aO [XOlyO]

0.3142 [75, 75] 0.3179 | [74.8541, 74.8198]
(0.17) [66, 63] 0.3076 | [65.9622, 62.8683]
0.1885 [75, 75] 0.1844 | [75.1447, 75.3469)
(0.0671) [66, 63] 0.1855 | [66.1119, 63.0849]
0.0942 [75, 75] 0.0916 | [74.6622, 75.3036]
(0.0371) [66, 63] 0.0998 | [66.3612, 63.2027]

4.2. Cdlular Automaton Model

The second set of our results pertains to spiral waves
generated by the cellular automaton model. Here no
ground-truth values of the spiral wave parameters are
known, however a high-resolution image of the wave can
be obtained from the model. Figure 3(a) is a snapshot of

the recovery variable, V,, which clearly displays spiral
wave behavior. We position the 4 electrodes at the same
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locations as in the first set of results, and estimate the
spiral wave parameters. We then reconstruct a spiral wave
using the estimated parameters. As shown in figure 3(b),
the reconstructed activation distribution looks remarkably
consistent with the map generated by the CA model. This
result validates our Archimedean spiral model for cardiac
wave propagation and demonstrates the effectiveness of
our parameter estimation algorithm.
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Figure 3(a): Activation map obtained from CA model

i

Figure 3(b): Reconstructed spiral wave

In summary, we have developed a robust algorithm to
identify parameters of a spiral wave using only 4 sensors.
The algorithm has an immediate application in basket
catheter electrogram analysis for atrial fibrillation
patients. Numerical simulation results have confirmed the
algorithm’s effectiveness and viability.
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