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ABSTRACT 
 
The problem of retrieving spiral wave parameters 
(frequency, radial velocity, and center location) using a 
minimal number (4) of spatial sensors is considered. The 
problem has the important application of localization of 
spiral wave sources of atrial fibrillation from basket 
catheter electrograms. Numerical simulations demonstrate 
that our algorithm works effectively for a wide range of 
parameters, and for spiral waves generated by a cellular 
automaton model of cardiac wave propagation. 
 
 

1. INTRODUCTION 
 
Atrial fibrillation (AF) is a common cardiovascular 
disease that affects nearly 1% of the population and up to 
5% of the population over 80 years old [1]. A 2.5-fold 
increase in AF cases is expected by the year 2050. AF is 
associated with an increased risk of stroke and mortality, 
impaired exercise tolerance, fatigue and heart failure. AF 
is characterized by rapid (>400 beats/minute) irregular 
electrical excitation of the atrial cardiac tissue leading to 
inefficient pumping of blood from the atria to the 
ventricles. While the precise physiological mechanisms of 
initiation and maintenance of AF remain elusive [2] there 
is increasing evidence that AF is driven by localized 
organized sources of electrical activity [2-3]. This has 
been clinically observed and an important therapeutic 
intervention of AF is tissue ablation [3-4], where a lesion 
is created with a specialized catheter using radiofrequency 
energy in order to disrupt the electrical conduction from 
an organized source of AF. Success of this therapy 
depends critically on the ability to locate the source, 
characterize the nature of the source and create a lesion 
that interrupts electrical conduction from the source. 
Therefore, significant improvements in AF therapy can be 
gained by improving the ability to detect such sources. 

The localized source hypothesis is but one of several 
hypothesized mechanisms of AF [5]. It has gained enough 
acceptance, however, that part of clinical practice is to 
map the electrical activity of the atria to locate a potential 

AF source. One method of clinical testing is to insert a 
basket catheter (figure 1) into the atrium and measure the 
electrical activity with electrodes at a number of spatial 
locations (32 locations in the case considered here). While 
most sources have been shown to originate from the 
pulmonary veins [3], several other locations have also 
been implicated [4]. These rotors are thought to represent 
spiral waves, where the wave front propagation forms a 
closed loop and electrical activation propagates away 
from the center of rotation to excite the rest of the atrium. 
While spiral waves have been observed in some animal 
studies using optical mapping of excised hearts [6], they 
are very difficult to identify in vivo, since a spiral wave is 
very likely to be under-sampled with a basket catheter. In 
order to locate the center of a spiral wave and determine 
other parameters of the wave for an ablation procedure, 
parametric models of the wave are required for any 
estimation algorithm. 

 
Figure 1: Basket Catheter Electrodes 

 
Our approach to developing signal analysis techniques for 
better detection of sources of AF is to perform simulations 
of hypothesized sources on a planar surface, utilizing the 
cellular automaton (CA) modeling approach. The wave 
behavior of interest can be sampled as signals at a small 
number of locations, representative of electrode locations, 
and then algorithms can be developed to determine the 
parameters of the source. Validation of the algorithm is 
conducted by utilizing the full information available from 
the CA simulation.  
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2. CELLULAR AUTOMATON MODELS 
 

Cardiac tissue is classified as an excitable medium, 
where a voltage excitation of sufficient magnitude 
initiates cardiac wave propagation, a process where 
individual cells “sense” the state of neighboring cells and 
“fire” once neighboring cells fire. Once a cardiac cell 
“fires”, it undergoes a sequence of physiological 
processes that leads to contraction of the cell and 
ultimately the whole atrium contracts. The idea behind 
cellular automaton modeling is that an array of “cells” is 
defined as having a resting state and an excited state and 
the cells are designed to transition from the resting to the 
excited state based on the state of nearby cells. Wave 
propagation is initiated in the array and the resulting wave 
characteristics (wave speed, dispersion relationship, etc.) 
emerge from the designated cell properties and the cell-
cell coupling. The resulting process very closely mimics 
the wave behavior in excitable media, such as cardiac 
tissue. Advantages of CA models are that they are much 
simpler and faster than models based on differential 
equations, because the underlying cellular mechanisms 
need not be computed. CA models of myocardium have 
actually been in existence for quite some time since the 
pioneering work of Wiener and Rosenbluth [7]. and by 
Moe et al. [8]. Over the last several decades, CA models 
of excitable media have experienced a number of 
developments and also occur in various forms. In our 
work, we have adopted the CA algorithm given by 
Gerhardt, et al. [9] (GST Algorithm). More recently, the 
GST algorithm has been examined as one of several 
computational approaches in the framework 
computational biology [10] and has been implemented for 
simulation of cardiac excitation pattern of a three-
dimensional anatomically correct heart [11]. 

The cellular automaton model consists of a planar 
array of cells that contain two integer state variables, the 

excitation variable, tu , that can take on the values of 0 or 

1 and a recovery variable, tv , that consists of a refractory 

period, a time over which the cell can not be re-excited 
and a relatively refractory period where the cell can be 
excited only with a sufficiently large excitation.  The state 
variables are 
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The excitation variable, tu , transitions from 0 to 1 when 

the cell becomes excited. The recovery variable evolves in 

time according to the following set of rules, where upg  

and downg  are integer step sizes that can be adjusted to 

get different CA model behaviors. 
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At each step in the simulation a defined neighborhood 
of cells around each cell is examined and a given cell 
becomes excited at the next time step if it is both 
sufficiently recovered and if the number of cells in the 

defined neighborhood exceeds a given threshold, 0
excik .  If 

the cell is in the relatively refractory state then the 

excitability threshold is larger than 0
excik  and is a linear 

function of the recovery variable, tv . Finally, we adapt a 

technique developed by Markus and Hess [12] to 
eliminate the anisotropy inherent in CA models by 
superimposing a small random “jitter” on the locations of 
the center of the cells in the rectangular array.  

 
3. SPIRAL WAVE PARAMETER ESTIMATION 

 
As pointed out in section 1, a spiral wave is spatially 
under-sampled, therefore parametric methods must be 

used to estimate its parameters. Let 0 0( , )x y  (unknown) 

be the center of the spiral wave, and ( , )i ix y  (known) be 

the coordinates of the electrodes. First we introduce the 

polar coordinate system with respect to 0 0( , )x y : 
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then we model the spiral wave as Archimedean spiral [13] 
in polar coordinates as 

 0 0( , , ) ( )f r t h r tφ φ α ω= − −  (4) 

where ( )h i  is any 2π  periodic function. The angular 

frequency of the wave is 0ω , the separation between 

successive turns (radial period) is 02 /π α , and the radial 

velocity is 0 0/ω α .  

Let ( )nf t  be the signal acquired by the n’th electrode. 

Then 

 ( ) ( , , ) ( )n n n nf t f r t w tφ= +  (5) 

where ( )nw t  is noise. Note that ( , )n nr φ  are 

parameterized by 0 0( , )r φ . The angular frequency 0ω  

can be easily obtained by doing Fourier analysis of any 

channel. To estimate 0 0( , )r φ  and 0α , consider the cross 

correlation of two channels, 
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The location of the correlation peaks can tell us the 
relative delays between the two channels, subject to the 

ambiguity of multiple periods. That is ( )mnR τ  will reach 

maxima at mnτ  when 

0 0 0( ) ( ) 2m m n n mn mnr r kφ α φ α ω τ π− − − = +  (7) 

Here mnk  is an integer. Therefore, if we have 4 sensors 

for a spiral wave, we could measure their relative time 
delays by cross correlation, and have 3 independent 

equations from (7). Suppose mnk  can be determined 

through other means and absorbed into mnτ , then 
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From (8) we may obtain the simultaneous nonlinear 
equations 

0 0 0 0( , ) ( , ), ( , ) ( , )mn m nx y x y m n m n′ ′ ′ ′Α = Α ≠  (9) 

which could be used to solve 0 0( , )x y . We seek the least 

squares solution by minimizing the cost function 
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The minimization can be carried out by gradient descent 

or other standard optimization techniques. After 0 0( , )x y  

have been found, the estimate of 0α  can be obtained 

through equation (8). 
One final issue is the determination of 

mnk . In 

principle mnk  cannot be determined uniquely from the 

electrograms alone. This is essentially the aliasing 
phenomenon due to under-sampling. In our algorithm we 
use different trial values of mnk  to obtain possible 

solutions. However, in our simulations, we are able to 
resolve all ambiguous solutions by placing additional 
restrictions on the spiral wave parameters, such as not 
allowing the center of the wave to be too far away from 
the electrodes. 
 

4. SIMULATIONS AND DISCUSSIONS 
 
In this section, we demonstrate the accuracy and 
effectiveness of the proposed algorithm. Since there 
would be no practical way to determine the ground truth 
of spiral wave parameters of in vivo AF basket catheter 
electrograms, we choose to use simulated electrograms to 
test our algorithm.  
 
4.1. Simulated Spiral Wave 

 
Our first set of results pertains to estimating the angular 
frequency, radial velocity and center coordinates of a 
synthesized spiral. Here ( )h t  is chosen as a periodic 

triangular pulse with 0 50ω =  to simulate the rise and 

fall of the signal voltage due to wave passage. An 
example configuration of the four electrodes relative to 
the synthesized spiral wave is shown in figure 2. 

 
Figure 2: Electrode locations for spiral wave estimation 

 
Table 1 shows a range of synthesized spiral wave 
parameters and their estimates by the algorithm. We 
observe that in all cases the parameters have been 
correctly recovered to within good accuracy. 
 

Table 1: Spiral wave parameters and their estimates 
 

0α  [ 00 , yx ] 0α̂  [ 0 0ˆ ˆ,x y ] 

[75, 75] 0.3179 [74.8541, 74.8198] 0.3142 
(0.1π ) [66, 63] 0.3076 [65.9622, 62.8683] 

[75, 75] 0.1844 [75.1447, 75.3469] 0.1885 
(0.06π ) [66, 63] 0.1855 [66.1119, 63.0849] 

[75, 75] 0.0916 [74.6622, 75.3036] 0.0942 
(0.03π ) [66, 63] 0.0998 [66.3612, 63.2027] 

 
4.2. Cellular Automaton Model  
 
The second set of our results pertains to spiral waves 
generated by the cellular automaton model. Here no 
ground-truth values of the spiral wave parameters are 
known, however a high-resolution image of the wave can 
be obtained from the model. Figure 3(a) is a snapshot of 

the recovery variable, tv , which clearly displays spiral 

wave behavior. We position the 4 electrodes at the same 
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locations as in the first set of results, and estimate the 
spiral wave parameters. We then reconstruct a spiral wave 
using the estimated parameters. As shown in figure 3(b), 
the reconstructed activation distribution looks remarkably 
consistent with the map generated by the CA model. This 
result validates our Archimedean spiral model for cardiac 
wave propagation and demonstrates the effectiveness of 
our parameter estimation algorithm. 

 
Figure 3(a): Activation map obtained from CA model 

 
Figure 3(b): Reconstructed spiral wave 

 
In summary, we have developed a robust algorithm to 
identify parameters of a spiral wave using only 4 sensors. 
The algorithm has an immediate application in basket 
catheter electrogram analysis for atrial fibrillation 
patients. Numerical simulation results have confirmed the 
algorithm’s effectiveness and viability. 
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