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ABSTRACT

We address the problem of passive blind estimation of
time-delays for several mutually uncorrelated source
signals received by a similar number of sensors. The
mixtures at the receivers are modeled as unknown lin-
ear combinations of differently delayed versions of the
source signals. The standard tools used in blind source
separation (BSS) for either static or convolutive mix-
tures are inappropriate for this problem: The former is
obviously under-parameterized, while the latter is over-
parameterized and poorly suited for accommodating
pure fractional delays. Thus, in this paper we propose a
hybrid algorithm, which uses a specially parameterized
approximate joint diagonalization of spectral matrices
to estimate the delays (as well as the unknown mix-
ing coefficients). The joint diagonalization algorithm
is an extension of the iterative ”AC-DC” algorithm,
previously proposed in the context of BSS with static
mixtures. We provide analytic expressions for all re-
quired steps for the two sensors / two sources case, and
demonstrate the performance using simulations results.

1. INTRODUCTION

The problem of passive time-delay estimation has mainly
been treated for the case of a single source signal, pos-
sibly in the presence of multipath replica thereof (see,
e.g., [1]). When multiple (statistically independent)
source signals are present, the problem becomes more
closely related to that of blind source separation (BSS),
especially when the use of prior knowledge (such as ge-
ometrical properties of the sensors array) is unfeasible
or undesired.

The classical BSS problem has seen extensive treat-
ment in the contexts of static and convolutive mixtures
(e.g., [2, 3]).In this paper we address a hybrid model,
in which the mixing is constrained to consist of pure
delays in addition to static mixture coefficients. The
delays are assumed to have occurred prior to the sam-
pling process, and are therefore not necessarily an inte-
ger multiple of the sampling period. The (pre-sampled,

continuous-time) source signals are assumed to be mu-
tually uncorrelated, wide-sense stationary (WSS) with
unknown spectra. They are further assumed to be
band-limited, so that the sampling is at least at the
Nyquist rate.

The problem of time-delay estimation for mixtures
has seen little treatment in the literature so far. In
[4] some preliminary analytic solutions are proposed,
based on second and/or fourth order spectra; However,
the model addressed does not allow for unknown mix-
ing coefficients in addition to the delays (although it
is indicated that one of the solutions can be adapted
to accommodate ones). In [5] the case of fewer sensors
than sources is addressed, but again there’s no provi-
sion for unknown mixing coefficients. In [6] the delays
are assumed to be integer multiples of the sampling
period.

In this paper we address the following L sources -
L sensors model (to be later reduced to L = 2):

xp(t) =
L∑

q=1

apqsq(t − τpq) p = 1, 2, . . . L (1)

where sq(t) are zero-mean, WSS with unknown spec-
tra, xp(t) are the observations, apq are the mixing co-
efficients and τpq are the delays from source q to sen-
sor p. To mitigate the ambiguity associated with the
sources’ undetermined time-origin, we use as a ”work-
ing assumption” zero delays from each source to the
”respective” sensor, i.e., τpp = 0 for p = 1, 2, . . . L.

The available data are samples of the continuous-
time observations, xp[n] = xp(nT ) n = 1, 2, . . . N ,
where T is the sampling period (we shall use parenthe-
ses / brackets to enclose continuous- / discrete- time
indices, respectively). It is assumed that all the source
signals (and hence the observed signals) are bandlim-
ited at (angular) frequency π/T . It is desired to esti-
mate the relative delays τpq from the observed samples.

The paper is organized as follows: In the next sec-
tion we present the estimation problem as a specially
parameterized joint diagonalization problem in the fre-
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quency domain; In section 3 we propose an iterative
algorithm for the joint diagonalization, based on an
extension of the ”AC-DC” algorithm [7]; In section 4
we present some simulations results.

2. FORMULATION AS A JOINT
DIAGONALIZATION PROBLEM

The observations’ correlation functions are given by

Rx
mn(τ) = E[xm(t + τ)xn(t)]

=
L∑

p=1

L∑
q=1

ampanqE[sp(t − τmp + τ)sq(t − τnq)]

=
L∑

q=1

amqanqR
s
q(τ + τnq − τmq) 1 ≤ m,n ≤ L

(2)

where Rx
mn(τ) denotes the correlation between the m-

th and the n-th received signals, and Rs
q(τ) denotes the

autocorrelation of the q-th source signal.
Fourier-transforming (2), we obtain

Sx
mn(ω) =

L∑
q=1

amqanqS
s
q (ω)e−jω(τmq−τnq )

1 ≤ m,n ≤ L (3)

where Sx
mn(ω) is the cross-spectrum between the m-th

and n-th received signal and Ss
q (ω) is the q-th source’s

(unknown) spectrum. Eq. (3) can also be expressed in
matrix-form as

Sx(ω) = B(ω)Ss(ω)BH(ω) (4)

where Sx(ω) is an L × L matrix consisting of Sx
mn(ω)

as the m,n-th element, Ss(ω) is an L × L diagonal
matrix consisting of Ss

q (ω) as its q, q-th elements, and
B(ω) is the L×L matrix given by B(ω) = A�D(ω),
where � denotes Hadamard’s (element-wise) product,
A is the constant matrix of mixing coefficients, whose
m,n-th element is amn, and D(ω) contains the delays,
such that its m,n-th element is given by

Dmn = e−jωτmn 1 ≤ m,n ≤ L. (5)

The cross-spectral matrices Sx(ω) are unknown, but
can be estimated from the available data, possibly by
using the Discrete-Time Fourier Transform (DTFT) of
a truncated series of unbiased cross-correlations esti-
mates (Blackman-Tuckey’s method, e.g., [8]). Specifi-
cally, to estimate the m,n-th element of Sx(ω), we may

use Ŝx
mn(ω) =

∑M
l=−M R̂mn[l]e−jωl, where

R̂mn[l] =
1

N − |l|
N−|l|∑
p=1

xm[p + l]xn[p] − M ≤ l ≤ M.

(6)
and M is the truncation-window length. If M is larger
than the sum of the longest correlation length (among
all source signals) and the maximal delay, then these
are unbiased estimates of the desired (cross-) spectra.

Note that in the transition from continuous time
to discrete time, the frequency axis is rescaled to the
range −π : π, resulting in some constant (and irrele-
vant) scaling of the estimated spectra. Consequently,
estimated delays will later have to be translated from
sample units to time units via multiplication by T .

When estimated values, rather than true values, of
Sx(ω) are used, the equations (4) usually can no longer
be satisfied simultaneously at all frequencies. Never-
theless, once Sx(ω) is estimated at several frequencies
ω0, ω1, . . . ωK , an estimate of the unknown parameters
of interest can be obtained by resorting to approximate
joint diagonalization (see e.g. [7, 3]), seeking to mini-
mize the following least-squares (LS) criterion:

min
A,T ,Γ

CLS
�
=

K∑
k=0

||Sx(ωk) − B(ωk)Ss(ωk)BH(ωk)||2F
(7)

where T is an L × L matrix containing the delay pa-
rameters τmn, Γ is an L × (K + 1) matrix containing
the sources’ spectra, γmk = Ss

m(ωk) 1 ≤ m ≤ L 0 ≤
k ≤ K and || · ||2F denotes the squared Frobenius norm.
Note that it is also possible to use a weighted LS crite-
rion by introducing some positive weights wk into the
sum; however, to simplify the exposition, we shall not
pursue this possibility in here.

Several algorithms exist for joint diagonalization of
sets of matrices. However, these algorithms assume a
fixed diagonalizing matrix B, rather than B(ωk) which
depends on the index k. In the next section we pro-
pose an extension of an existing joint diagonalization
algorithm, namely the AC-DC algorithm [7], adapted
to this minimization problem.

3. JOINT DIAGONALIZATION VIA THE
EXTENDED AC-DC ALGORITHM

The AC-DC (”Alternating Columns / Diagonal Cen-
ters”) algorithm [7] is an alternating-directions mini-
mization algorithm, originally intended for the case of
a fixed diagonalizing matrix B. In our case the matrix
B is not constant, but can be factored so as to depend
on two constant matrices, A and T . It is then possible
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to minimize w.r.t. each column of A and T separately,
thus alternating between minimizations w.r.t.:

• Γ (in the DC phase);

• each column of A (in the AC-1 phase);

• each column of T (in the AC-2 phase).

3.1. The ”DC” phase

In the DC phase we wish to minimize CLS w.r.t. Γ,
with A and T fixed. Since the k-th column of Γ is
the diagonal of Ss(ωk), it participates only in the k-th
term of the sum in (7). Thus, the minimization can be
decomposed into K +1 distinct minimization problems
which are all linear in the unknown parameters, and
thus admit the well-known linear LS solution. Specif-
ically, note that each (k-th) term in the sum can be
expressed as

||Sx(ωk) − B(ωk)Ss(ωk)BH(ωk)||2F
= [yk − Hkγk]H [yk − Hkγk] (8)

where γk is the k-th column of Γ, yk
�
= vec{Sx(ωk)}

(vec{·} denoting the concatenation of the matrix’ columns
into one vector), and

Hk = (B(ωk)∗ ⊗ 1) � (1 ⊗ B(ωk)) (9)

where 1 denotes an L × 1 vector of 1-s, ⊗ denotes
Kronecker’s product, � denotes Hadamard’s (element-
wise) product, and the superscript ∗ denotes conjuga-
tion (note that this expression is sometimes referred to
as the Khatri-Rao product of B∗ and B). The well-
known minimizer of the linear LS problem is

γk = [HH
k Hk]−1HH

k yk. (10)

3.2. The ”AC-1” phase

We now wish to minimize CLS w.r.t. the l-th (l =
1, 2, . . . L) column of A, assuming the other columns,
as well as T and Γ, are fixed. Defining

S̃(ωk)
�
= Sx(ωk) −

L∑
n=1
n�=l

Ss
n(ωk)bn(ωk)bH

n (ωk), (11)

where bn(ωk) is the n-th column of B(ωk), we can ob-
tain, through some algebraic manipulations (using the
fact that all Ss

n(ωk) are real-valued, being the sources’
spectrum)

CLS = C̃ − 2
K∑

k=0

Ss
l (ωk)bH

l (ωk)S̃(ωk)bl(ωk)+

+
K∑

k=0

(
bH

l (ωk)bl(ωk)
)2

Ss2
l (ωk)

(12)

where C̃ is an independent constant. Observe now,
that bl(ωk) can be written as

bl(ωk) = Λl(ωk)al (13)

where Λl(ωk) = diag{e−jωkτ1l , e−jωkτ2l , . . . e−jωkτLl}.
Consequently, CLS can be further simplified,

CLS = C̃−2aT
l

[
K∑

k=0

Ss
l (ωk)ΛH

l (ωk)S̃(ωk)Λl(ωk)

]
al+

+ (aT
l al)2

K∑
k=0

Ss2
l (ωk). (14)

We can further decompose al into a scale a times a
unit-norm vector α, thus reducing (14) into

CLS = C̃ − 2a2αT Fα + a4f (15)

where F is the Hermitian matrix

F
�
=

K∑
k=0

Ss
l (ωk)ΛH

l (ωk)S̃(ωk)Λl(ωk) (16)

and f =
∑K

k=0 Ss2
l (ωk). Differentiating (14) w.r.t. a

and equating zero yields either the solution a = 0 or
a2 = αT Fα/f , which, since F is Hermitian, is real-
valued. Thus, if it is positive, then the minimizing a is
its square root, otherwise it is zero. Consequently, if F
is negative-definite, then minimization of CLS w.r.t. al

is attained by al = 0. Normally, however, this is not
the case, and substituting a2 back into (15) reduces the
problem into maximization w.r.t α of (αT Fα)2 subject
to αT α = 1. The desired solution is attained as the
eigenvector of F associated with the largest (positive)
eigenvalue.

3.3. The ”AC-2” phase

It is now desired to minimize CLS w.r.t. τ l, the l-th (l =
1, 2, . . . L) column of T , assuming the other columns,
as well as A and Γ are fixed. Since the dependence on
the delays τ l appears only through Λl(ωk), it is evident
from (14) that CLS can be expressed as

CLS = ˜̃C − 2al

[
K∑

k=0

ΛH
l (ωk)G(ωk)Λl(ωk)

]
al (17)

˜̃C being another constant, and G(ωk)
�
= Ss

l S̃(ωk).
Differentiating w.r.t. τpl and equating zero, we ob-

tain the following set of equations:

∂CLS

∂τpl
= −2j

L∑
m=1

aplaml·
K∑

k=0

ωk

(
gpm(ωk)ejωk(τml−τpl)−

−gmp(ωk)e−jωk(τml−τpl)
)

= 0 1 ≤ p ≤ L, p �= l

(18)
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where aij and gij(ωk) denote the i, j-th elements of A
and G(ωk), respectively. This set of equations is to
be solved w.r.t. τ1l, τ2l, . . . τLl except for τll, which by
convention was set to zero.

We do not have an analytical solution to (18) for the
general case. However, if we reduce the discussion to
the case of L = 2 sensors and sources, and the frequen-
cies {ωk}K

k=0 are chosen as ωk = kΩ k = 0, 1, . . . K
(with Ω a selected constant), then this set reduces to:

K∑
k=0

k
[
g21(kΩ)e−jΩτ21k − g12(kΩ)ejΩτ21k

]
= 0 (19a)

(for l = 1, p = 2), and

K∑
k=0

k
[
g12(kΩ)e−jΩτ12k − g21(kΩ)ejΩτ12k

]
= 0 (19b)

(for l = 2, p = 1). To proceed, we now define ρpl
�
=

ejΩτpl , so that (19a,19b) can be written as

K∑
k=0

k[gpl(kΩ)ρ−k
pl − glp(kΩ)ρk

pl] = 0, (20)

which, after multiplication by ρK turns into a polyno-
mial of degree 2K in ρ. Using polynomial rooting and
selecting all unit-modulus roots ρ̂pl, yields all (possi-
bly numerous) stationary points of CLS w.r.t. τpl via
τ̂pl = Imag{log ρ̂pl}/Ω. Each of these candidate solu-
tions can be plugged into (17) for evaluation of CLS in
order to select the minimizing solution.

It is interesting to observe, that in the L = 2 case
the dependence of (18) on A vanishes, so that this
phase (AC-2) can be regarded an inseparable part of
the previous phase (AC-1), since minimization w.r.t.
both al and τ l can be attained simultaneously.

4. SIMULATIONS RESULTS

We compare the estimation accuracy to a method pro-
posed by Comon and Emile in [4]. We used source
signals generated as follows. Both signal were origi-
nally generated at a sample rate 10 times higher than
the eventual processing sample rate, to enable frac-
tional delays prior to ”sampling”. At the higher sample
rate s1 and s2 were first generated as first-order Auto-
Regressive processes with parameters 0.76 and 0.81, re-
spectively, each using zero-mean unit variance white
Gaussian driving noise. Then both signals were low-
pass filtered to a max. frequency of 0.7 · 2π/10 using a
Kaiser-windowed filter of 80 taps with window param-
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Fig. 1: delays estimation MSE

eter β = 3.44 1. The signals were then delayed and
mixed, prior to subsequent decimation by 10.

We used the mixing matrix A =
[

1 1
1 1

]
, to enable

comparison to the algorithm of [4], which can only ac-
commodate this mixing matrix 2. The results in terms
of the mean squared error (mse) in estimating the de-
lays vs. the sample length N are shown in figure 1.
Both algorithms used the same data, with 100 trials
for each sample length. Our algorithm was used with
K = 10 matrices at 10 frequencies with Ω = 0.25
spacing. The ”pulsation parameter” for the algorithm
of [4] was ω = 0.245. The true nonzero delays were
τ12 = 2.1, τ21 = 5.5.
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