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ABSTRACT

A new Gibbs Sampling DOA estimator based on Bayesian
method (GSDB) is proposed to estimate the directions of
multiple sources. The estimator combines Gibbs sampler and the
Bayesian high-resolution method. The formulation of the
proposed Gibbs Sampling DOA estimator based on Bayesian
method is derived. The new method not only possesses the
performance of high-resolution direction finding in original
Bayesian method but also provides reduced computational
complexity to the original one from O(L® ) to O(KxJxN,).
Comparison with MUSIC shows that the new estimator has

higher resolution and better performance in low SNRs.

1. INTRODUCTION

High-resolution DOA estimation is an important research
area in array signal processing. It arises in many fields including
sonar, radar, astronomy, radio communications and geophysics.
DOA estimation has captured much attention in the past two
decades, and many methods have been proposed for different
applications. Eigen-decomposition based methods including
MUSIC, Maximum Likelihood estimator (MLE), and MODE are
some well-known procedures, and their performances have been
thoroughly studied. In recent years, Bayesian high-resolution
techniques [1], [2] and [3], which apply Bayes theorem in
frequency and DOA estimation, become attractive for their
superior performance. However the Bayesian high-resolution
DOA estimators require multidimensional grid computation and
search which are prohibitively expensive in the presence of large
number of sources [2], [3]. In this paper, an algorithm combining
the Bayesian method and the Gibbs sampler for DOA estimation
is proposed. The proposed method provides notable
improvement in the computational complexity over original

Bayesian method we proposed with high-resolution performance.
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2. BAYESIAN DOA ESTIMATOR
Consider a linear equi-spaced array of M sensors. The inter-
element spacing b is equal to half of the carrier wavelength.
Multiple far-field sources emit narrow-band signals with the
direction parameters 6, and frequencies f, (k=1,2,...,K), which
impinge on the sensors. These signals can be coherent or
incoherent. The additive noise is assumed to be Gaussian and
white with zero mean and variance % . Let ¢ denote the speed of
the signal propagation in the medium, and r, =bsiné, /c. Then

the data collected from the m-th sensor at time '[n are

Xn(th) = é 1 (t, )exp[j (¢, JJexplj2f, (t, — (M= 1), )]+ n,(t,)
> Aclty) Fric(t) + N (t,) (M
ke

1

where n=1,2,...,N with N being the number of snapshots,
Aty =1, (t,)exp[ig(t,)]. 1, (t,) is the unknown amplitude
of the k-th signal at time t,,, ¢,(t,) is the unknown phase of k-th
signal at time t,, f. (t,)=exp[j2af,(t, - (m-1),)], and
nm(tn) is the noise at time t, on the m-th sensor. Our main
interest here is to estimate@ =[6),...,6,]". The unknown
complex amplitudes A={A (t,), v k, n} and the noise variance o’
are considered as the nuisance parameters. From a Bayesian
perspective, the main entity for estimation is the posterior

distribution of @ which can be expressed as
p@ | X)=[p(X0.Ac>)pl0. A c)dAdo? @

To solve the integration analytically, an orthogonalization on the
data snapshots is performed [2], [3]. In particular, first the
snapshots are divided into N, blocks with each block having n,
snapshots. Then the orthogonalization of the data in the S-th
block is accomplished by
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YA ) = D BH(t) 3)
k=1

k=1
where

() = \/—Zewfml(t n) s Bk:\/Z;Aak’ and

Ay and ék = [e1k » 6, By ]T are the eigenvalues and the

eigenvectors of a KxK matrix F whose elements are defined as

SNy M

Fkl = Z z frrk (tn) 1:ml (tn) . (4)
n=1+(s-1)ny m=1

Now, if the Jeffreys’ priors are adopted, the desired posterior

density function can be obtained as

2

p(@ | X) e _[O'ZKNVZMN" exp{— 7(62 —h’ )}da
o

(2KNp—2MN)/2
} (5)

where Zd2 Z Z Z|X (t )|2

s=1 n=1+(s-1)n, m=1

N M
=D Xt ] (6)

2

3 St HL () ()

n=1+(s-1)n, m=1

and Q2= zb:

Notice that (5) is highly nonlinear and high dimensional with
respect to @ . Thus calculations of the popular Bayesian
estimators could be very intensive, especially when K is large.
For instance, to obtain the maximum a posteriori (MAP)
estimator of & ,a K dimensional search is carried out to find the
K maximum peaks in the posterior distribution. The angles
corresponding to these K peaks are the MAP estimate of the
directions of the sources. Suppose that L grids are used for each
dimension. The complexity of the K dimensional computation
is O(L* ). Although the resolution ability of Bayesian method is
rather high, the computational cost of the K dimensional
computation and search could be prohibitively expensive for
large K. To improve the real time computation of the Bayesian

method, computational feasible solutions are demanded.

3. GIBBSSAMPLING

The Gibbs sampler is a Markov chain Monte Carlo (MCMC)
sampling method for numerical evaluation of multidimensional
integrations. Its popularity is gained from the facts that it is
capable of carrying out many complex Bayesian computations. In
the past decade, it has been intensively studied by statisticians and
in recent years its applications in signal processing has been
picked up.

The basic idea of the Gibbs sampler is to simulate a Markov
chain in the state space of x so that the equilibrium of this chain is
the target distribution p(é | X). So the Gibbs sampler algorithm
is to first generate random samples from the joint posterior
distribution p(é | X) by running Markov chains. Then the
resulting samples are used by the Monte Carlo method to
approximate the required high dimensional integrations. And the
Gibbs sampler requires an initial transient period to converge to
equilibrium. The initial period is known as the “burn-in” period,
and the first N, samples in the period should always be discarded.
Detection of convergence is usually done in some ad hoc way. For

tutorials on the Gibbs sampler, see [4], [5].

4. BAYESIAN DOA ESTIMATOR BY GIBBS
SAMPLING

We can notice that the high dimensional integrations in (2) impose
great computational difficulty and the K dimensional search for
the DOA estimation. To solve the real-time question, here we
resort to the Gibbs sampler.

The key objective in a Gibbs sampling implementation is the
generation of samples from the posterior distribution p(é | X ) It

is achieved through an iterative scheme. In a detail, given some

initial  values 0 (©) of  the K unknown  directions,
fori =1,2,---, N, we proceed
1) Draw sample 191“) from p(l91 |92(i’1)’...’49£*1)’ X)
2) Draw sample Hz(i) from
plo. 16,61 607 X)
K) Draw sample 64 from p(@K 100,--,89,, X)

Notice from (5) that p(d, | 6" ,---,
all k=1, 2, ...

Gamma distributions. Therefore special care must be taken to

i i-1
9&'}1,9&1 ) e, X) for

, K are not such distributions like the Gaussian or

achieve the required sampling objective. Next we proposed a
procedure which applies the sampling-resampling [7] and kernel
smoothing [7] techniques. In detail, the sampling of 0&” from
p(ek |el(i)a"'seli?l’HIE:I)s""
1 Obtain J samples from the uniform distribution U(-90, 90)

X)) is carried out as follows:
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and denoted them by u(j), j=L--,J.

2 For each u(j ) s form a new vector

=1 ; -1 -1
a; :[01(”:92“))"'9‘91?—)1)“(]):91:1 )’__.’9}(2 )], and
then calculate from the distribution (5) the weights

W, oc p(a; | X) -

Next obtain the normalized weights by

3 Calculate the sample mean and variance according to

J J
— ; —2 N )2
g=ywui) & =xwu()-z)

j=1 i=

Then we approximate the conditional distribution
PO, 16" ,---,0" .6 ... X)) by amixture density as

J
a(6,)= szTN(ek |Ej,h262)

j=1

where TN ( |a, b) represents a truncated Gaussian with the mean
1 -

a, the variance b, in particular, h = (4/3)3/ J5, B=A+I1- h* ,

and ;= fu(j)+(1-p)a.

4 Now our original

p(o, |01("),---,6&1)’9'521’1),-..,X) becomes sampling from

the mixture g(&k ), k=1,---,K which is implemented as

objective of sampling from

(1) Sample an index | with probability w;,

(2) Sample Qéi) from TN (Hk | 2, hZEZ) .
To ensure convergence, the above procedure is usually carried
out for (no + N) iterations, and samples from the last N iterations
are used to calculate MMSE of the sources’ directions. Finally,
the MMSE of the directions of K sources can be obtained from the
corresponding sample means as

ng+N

S k=1-.K ®)

1
B0, I X} =
n=ny+1

The complexity of the proposed Gibbs Sampling DOA estimator
based on Bayesian method (GSDB) is of O(Kx Jx Ny). To compare
with a K dimensional search, we observe that, first, due to the use
of kernel smoothing techniques, J is smaller than L, the number of
grid used in the K dimensional search. Secondly, as we will show

next that the proposed algorithm converges very fast. Hence, N

grow with K much slower than exponentially. As a result, for a
large K, the computational demand of the GSDB is tremendously

reduced with respect to that of the K dimensional search.

5.EXPERIMENTAL RESULTS
In this section, several experiments are conducted to show the
performance of the GSDB. The performance comparisons with
other popular methods such as MUSIC are also provided.

In first experiment, we consider a scenario of having three
sources. The true DOASs of the sources are 72°, 76 "and 80" . In
Figure 1, we plotted three trajectories of the samples collected in
the 80 iterations. It is clear that the samples of all signals converge
very fast and fluctuate around the true values.

In the second experiment, the performance of the GSDB
was compared with MUSIC and the results are shown in Table 1
and Table 2 (where BW means the bandwidth). These results are
based on large amount of computer simulations and the statistical
analysis indicates that the GSDB possesses the high resolution,
and it is much more robust under low SNRs. From the two tables,
we notice that, under high SNRs (Tablel), the GSDB possesses
higher estimation accuracy than other methods. And under low
SNRs (Table2), the estimation accuracy of GSDB is still superior
to that of MUSIC. When SNR=-5dB, MUSIC can not distinguish
these three sources while the resolution probability of GSDB is
100%. And when the DOA interval between three sources
becomes closer, the superiority of the new method is more
obvious. Furthermore, the calculation is much less than the
original Bayesian method. For example, for three sources the
computation of original Bayesian method is about O(10°%) while
that of new method is only about O(9* 10 } ). As we have shown
above, the computation complexity of the original Bayesian
method is O(L¥ ). The accuracy could be improved as L increases
while the computation complexity becomes also higher. And
when K becomes bigger, the complexity will be increased
exponentially. But the complexity of GSDB, O(KxJxNy), is
increased only linearly as K increases with also keeping the
original good performance. The comparison of computation
complexity between the original Bayesian method and GSDB as
K increases is shown in figure 2. It is clear that the GSDB is a very
efficient. DOA high-resolution estimator for multiple source

localization.
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Figurel. Sample trajections of three signals from 72 ° ,76 *and 80"
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are 80 iterations and the SNR is 15dB.
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Figure2. The comparison of the computation complexity between original
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Bayesian method and GSDB, K is the number of sources, JS is the

computation complexity. ( J=1000, L=100, N s=30)

Table 1 The comparison of angular resolution threshold between GSDB and MUSIC

Uniform Linear Array, M=12, BW=8.9104 °, Snapshots N=100, SNR=15dB

GSDB MUSIC
Method
etho Resolution RootMean Resolution Root Mean
Direction Proboabﬂlty Square Error (°) Pmboabﬂlty Square Error (°)
Of Sources (o) (o)
0,,,=72°,76°,78° 100 0.6689 66 0.8851
Table 2. The comparison among GSDB, MUSIC
Uniform Linear Array, M=12, BW=8.9104 ° , Snapshots N=500,
Direction
(0)3 SNR=0dB SNR=-5dB
Sources
01.,5=72°,76°80° 01,5=72°,76°,78° 01,5=72°,76°80° 01,5=72°,76°78°
Method - - - -
Resolution RootMean Resolution Root Mean Resolution RootMean Resolution RootMean
Probability | SquareFmor | Probability | SquareEmor | Probability | SquareEmor | Probability | SquareEmor
(%) © (o) ) (o) ©) (%) ©
GSDB 100 0.8546 60 1.5693 60 1.8574 55 2.5912
MUSIC 10 1.0385 - - - - - -
6. SUMMARY Transactions on Signal Processing, 42(11): pp3051-3060,

In this paper a new method is presented which combines the

Bayesian high-resolution DOA estimation with the Gibbs sampler.

The formulation of the new method has been deduced and its
promising performance has also been investigated. It has been
shown that the new estimator possesses not only good
performance but also improvement in reducing computational
expenses from O(L ) to O(KxJxN,). The simulations have also
demonstrated that it achieved higher resolution than MUSIC,
especially in the low SNRs.
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