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ABSTRACT
A new Gibbs Sampling DOA estimator based on Bayesian

method (GSDB) is proposed to estimate the directions of
multiple sources. The estimator combines Gibbs sampler and the
Bayesian high-resolution method. The formulation of the
proposed Gibbs Sampling DOA estimator based on Bayesian
method is derived. The new method not only possesses the
performance of high-resolution direction finding in original
Bayesian method but also provides reduced computational
complexity to the original one from O(LK ) to O(K×J×Ns).
Comparison with MUSIC shows that the new estimator has
higher resolution and better performance in low SNRs.

1.  INTRODUCTION
High-resolution DOA estimation is an important research

area in array signal processing. It arises in many fields including
sonar, radar, astronomy, radio communications and geophysics.
DOA estimation has captured much attention in the past two
decades, and many methods have been proposed for different
applications. Eigen-decomposition based methods including
MUSIC, Maximum Likelihood estimator (MLE), and MODE are
some well-known procedures, and their performances have been
thoroughly studied. In recent years, Bayesian high-resolution
techniques [1], [2] and [3], which apply Bayes theorem in
frequency and DOA estimation, become attractive for their
superior performance. However the Bayesian high-resolution
DOA estimators require multidimensional grid computation and
search which are prohibitively expensive in the presence of large
number of sources [2], [3]. In this paper, an algorithm combining
the Bayesian method and the Gibbs sampler for DOA estimation
is proposed. The proposed method provides notable
improvement in the computational complexity over original
Bayesian method we proposed with high-resolution performance.

2.  BAYESIAN DOA ESTIMATOR

Consider a linear equi-spaced array of M  sensors. The inter-
element spacing b  is equal to half of the carrier wavelength.
Multiple far-field sources emit narrow-band signals with the
direction parameters kθ  and frequencies kf  (k=1,2,…,K), which
impinge on the sensors. These signals can be coherent or
incoherent. The additive noise is assumed to be Gaussian and
white with zero mean and variance 2σ . Let c denote the speed of
the signal propagation in the medium, and cb kk /sinθτ = . Then
the data collected from the m-th sensor at time nt  are
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where n=1,2,…,N with N being the number of snapshots,
( ) ( )[ ]nknknk tjtItA φexp)( = , ( )nk tI  is the unknown amplitude

of the k-th signal at time nt , ( )nk tφ  is the unknown phase of k-th
signal at time nt , ( )( )[ ]knknmk mtfjtf τπ 12exp)( −−= , and

( )nm tn  is the noise at time nt  on the m-th sensor. Our main
interest here is to estimate T
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 and the noise variance 2σ
are considered as the nuisance parameters. From a Bayesian
perspective, the main entity for estimation is the posterior
distribution of θ  which can be expressed as
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To solve the integration analytically, an orthogonalization on the
data snapshots is performed [2], [3]. In particular, first the
snapshots are divided into bN  blocks with each block having bn
snapshots. Then the orthogonalization of the data in the s-th
block is accomplished by
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   Now, if the Jeffreys� priors are adopted, the desired posterior
density function can be obtained as
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Notice that (5) is highly nonlinear and high dimensional with
respect to θ

v
. Thus calculations of the popular Bayesian

estimators could be very intensive, especially when K is large.
For instance, to obtain the maximum a posteriori (MAP)
estimator of θ

v
, a K  dimensional search is carried out to find the

K maximum peaks in the posterior distribution. The angles
corresponding to these K  peaks are the MAP estimate of the
directions of the sources. Suppose that L grids are used for each
dimension. The complexity of the K  dimensional computation
is O(LK ). Although the resolution ability of Bayesian method is
rather high, the computational cost of the K  dimensional
computation and search could be prohibitively expensive for
large K. To improve the real time computation of the Bayesian
method, computational feasible solutions are demanded.

3. GIBBS SAMPLING

The Gibbs sampler is a Markov chain Monte Carlo (MCMC)
sampling method for numerical evaluation of multidimensional
integrations. Its popularity is gained from the facts that it is
capable of carrying out many complex Bayesian computations. In
the past decade, it has been intensively studied by statisticians and
in recent years its applications in signal processing has been
picked up.

 The basic idea of the Gibbs sampler is to simulate a Markov
chain in the state space of x so that the equilibrium of this chain is
the target distribution ( )Xp |θ

v
. So the Gibbs sampler algorithm

is to first generate random samples from the joint posterior
distribution ( )Xp |θ

v
 by running Markov chains. Then the

resulting samples are used by the Monte Carlo method to
approximate the required high dimensional integrations. And the
Gibbs sampler requires an initial transient period to converge to
equilibrium. The initial period is known as the �burn-in� period,
and the first 0n  samples in the period should always be discarded.
Detection of convergence is usually done in some ad hoc way. For
tutorials on the Gibbs sampler, see [4], [5].

4. BAYESIAN DOA ESTIMATOR BY GIBBS
SAMPLING

We can notice that the high dimensional integrations in (2) impose
great computational difficulty and the K dimensional search for
the DOA estimation. To solve the real-time question, here we
resort to the Gibbs sampler.
  The key objective in a Gibbs sampling implementation is the
generation of samples from the posterior distribution ( )Xp |θ

v
.  It

is achieved through an iterative scheme. In a detail, given some
initial values ( )0θ

v
of the K unknown directions,

for sNi ,,2,1 L= , we proceed
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all k=1, 2, �  , K are not such distributions like the Gaussian or

Gamma distributions. Therefore special care must be taken to

achieve the required sampling objective. Next we proposed a

procedure which applies the sampling-resampling [7] and kernel

smoothing [7] techniques. In detail, the sampling of )(i
kθ from
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+− θθθθ  is carried out as follows:

1  Obtain J  samples from the uniform distribution U(-90, 90)
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and denoted them by ( ) Jjju ,,1, L= .

2 For each ( )ju , form a new vector
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then calculate from the distribution (5) the weights
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Next obtain the normalized weights by
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Then we approximate the conditional distribution
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the mixture ( )kg θ , Kk ,,1L=  which is implemented as

(1) Sample an index j  with probability jw ,

(2) Sample )(i
kθ  from ( )22,| σµθ hTN jk .

 To ensure convergence, the above procedure is usually carried

out for ( )Nn +0  iterations, and samples from the last N iterations

are used to calculate MMSE of the sources� directions. Finally,

the MMSE of the directions of K sources can be obtained from the

corresponding sample means as
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The complexity of the proposed Gibbs Sampling DOA estimator

based on Bayesian method (GSDB) is of O(K×J×Ns). To compare

with a K dimensional search, we observe that, first, due to the use

of kernel smoothing techniques, J is smaller than L, the number of

grid used in the K dimensional search. Secondly, as we will show

next that the proposed algorithm converges very fast. Hence, Ns

grow with K much slower than exponentially.  As a result, for a

large K, the computational demand of the GSDB is tremendously

reduced with respect to that of the K dimensional search.
                       

5. EXPERIMENTAL RESULTS

     In this section, several experiments are conducted to show the
performance of the GSDB. The performance comparisons with
other popular methods such as MUSIC are also provided.

In first experiment, we consider a scenario of having three
sources. The true DOAs of the sources are 72 o , 76 oand 80 o . In
Figure 1, we plotted three trajectories of the samples collected in
the 80 iterations. It is clear that the samples of all signals converge
very fast and fluctuate around the true values.

In the second experiment, the performance of the GSDB
was compared with MUSIC and the results are shown in Table 1
and Table 2 (where BW means the bandwidth). These results are
based on large amount of computer simulations and the statistical
analysis indicates that the GSDB possesses the high resolution,
and it is much more robust under low SNRs. From the two tables,
we notice that, under high SNRs (Table1), the GSDB possesses
higher estimation accuracy than other methods. And under low
SNRs (Table2), the estimation accuracy of GSDB is still superior
to that of MUSIC. When SNR=-5dB, MUSIC can not distinguish
these three sources while the resolution probability of GSDB is
100%. And when the DOA interval between three sources
becomes closer, the superiority of the new method is more
obvious. Furthermore, the calculation is much less than the
original Bayesian method. For example, for three sources the
computation of original Bayesian method is about O(109) while
that of new method is only about O(9*10 3  ). As we have shown
above, the computation complexity of the original Bayesian
method is O(LK ).The accuracy could be improved as L increases
while the computation complexity becomes also higher. And
when K becomes bigger, the complexity will be increased
exponentially. But the complexity of GSDB, O(K×J×Ns), is
increased only linearly as K increases with also keeping the
original good performance. The comparison of computation
complexity between the original Bayesian method and GSDB as
K increases is shown in figure 2. It is clear that the GSDB is a very
efficient. DOA high-resolution estimator for multiple source
localization.
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Figure1.  Sample trajections of three signals from 72
o

, 76
o

and 80
o

are 80 iterations and the SNR is 15dB.

Figure2.  The comparison of the computation complexity between original

Bayesian method and GSDB, K is the number of sources, JS is the

computation complexity. ( J=1000, L=100, sN =30 )

Table 1  The comparison of angular resolution threshold between GSDB and MUSIC

Uniform Linear Array, M=12, BW=8.9104 o , Snapshots N=100, SNR=15dB
GSDB MUSIC

   Method

Direction
Of Sources

Resolution
Probability

(%)

Root Mean
Square Error (o)

Resolution
Probability

(%)

Root Mean
Square Error (o)

θ 1,2,3=72 o ,76o,78o 100 0.6689 66 0.8851

Table 2.  The comparison among GSDB, MUSIC

Uniform Linear Array, M=12, BW=8.9104 o , Snapshots N=500,

SNR=0dB SNR=-5dB

θ 1,2,3=72 o ,76o,80o θ 1,2,3=72 o ,76o,78o θ 1,2,3=72 o ,76o,80o θ 1,2,3=72 o ,76o,78o

    Direction
      Of

              Sources

 Method Resolution
Probability

(%)

Root Mean
Square Error

(o)

Resolution
Probability

(%)

Root Mean
Square Error

(o)

Resolution
Probability

(%)

Root Mean
Square Error

(o)

Resolution
Probability

(%)

Root Mean
Square Error

(o)
GSDB 100 0.8546 60 1.5693 60 1.8574 55 2.5912
MUSIC 10 1.0385 - - - - - -

 6. SUMMARY
   In this paper a new method is presented which combines the
Bayesian high-resolution DOA estimation with the Gibbs sampler.
The formulation of the new method has been deduced and its
promising performance has also been investigated. It has been
shown that the new estimator possesses not only good
performance but also improvement in reducing computational
expenses from O(LK ) to O(K×J×Ns). The simulations have also
demonstrated that it achieved higher resolution than MUSIC,
especially in the low SNRs.
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