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ABSTRACT

Signal subspace methods in DOA estimation for wide-
band sources require preprocessing to find initial val-
ues which are close enough to the true values or to
convert sensor outputs into desired forms. The pre-
processing procedure should be carefully done lest it
introduce some distortion. Failure to find proper ini-
tial values may prevent convergence of the estimator
or cause biases in the estimator. The proposed method
detects uncorrelated wideband sources using the signal
subspace and the noise subspace of decomposed wide-
band signals. It does not require any initial values. The
only preprocessing is narrowband decomposition of the
sensor output which is very common in other wideband
methods. Computer simulation showed that the pro-
posed method has less bias and comparable variance
than CSSM with small focussing errors.

1. INTRODUCTION

Direction-of-arrival (DOA) is one of the main parame-
ters to estimate in array signal processing. There have
been many approaches to estimate this parameter more
easily and/or more precisely. Among those, signal sub-
space methods are well known for their attractive per-
formance. Since the MUSIC estimator was published
[1], many methods which utilize subspace concepts have
been proposed. MUSIC and its descendants are used
for narrowband sources whose bandwidth is very nar-
row relative to the carrier frequency. Many methods
have been proposed to apply these narrowband signal
subspace methods to wideband sources [2, 3, 4]. The
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main difficulty in wideband DOA estimation is that
the signal subspace is different for different frequency
bands. Most of the previous approaches were concerned
with how to combine information from different fre-
quency bins into one signal or noise subspace so that
we can apply narrowband methods. These methods
show better performance than incoherent methods that
average independent DOA estimates from several dif-
ferent frequency bins. However, the generated coherent
subspace might have a “focussing error” which is gen-
erated in the process of focussing. When the focussing
angle is not same as the DOA, there is always bias
in the coherent signal subspace methods (CSSM) [5].
The beamforming invariance technique, which requires
a field of view (FOV) rather than a focussing angle, can
not detect as many signals as CSSM [4]. In the follow-
ing sections, we propose a new method which does not
require any preprocessing, focussing, or FOV.

2. ESTIMATOR

2.1. Array model

A calibrated M -sensor uniform linear array is consid-
ered with P far-field wideband sources (P < M). We
assume that the frequency bands of the sources are
known and those bands are overlapped to some ex-
tent. The sensor output can be easily decomposed
into several frequency bins by a filter bank or the dis-
crete fourier transform (DFT). The sensor output at
frequency ωi is

x(ωi) = Ai(θ)S(ωi) + η(ωi) (1)

where ωi lies in the source’s band, θ is a vector consist
of P DOAs, and η is white Gaussian noise. TheM×P
matrix Ai(θ) is

Ai(θ) = [ a(ωi, θ1) a(ωi, θ2) . . . a(ωi, θP ) ], (2)
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and the array manifold a(ωi, θj) is

a(ωi, θj) = [ e
−jωiτj e−j2ωiτj . . . e−jMωiτj ]T (3)

where τj = d sin θj/c, and c is the speed of propaga-
tion. The superscript T denotes transpose. The re-
lation between array manifolds of different frequencies
and DOAs is as follows.

a(ωx, θx) = Φ(ωy, θy)a(ωz, θz) (4)

where

Φ(ωy, θy) = diag{e
−jωyτy , e−jωy2τy , . . . , e−jωyMτy}.

(5)
Then, the relations between frequencies and DOAs are

ωx = ωy + ωz, (6)

sin θx =
ωy

ωx

sin θy +
ωz

ωx

sin θz. (7)

2.2. Algorithm

Let xi = x(ωi) where ωi for i = 1, 2, . . . ,K is within
the frequency bands of all sources. The number of fre-
quency bins, K, is constrained by

K ≥ max

{

M

M − P
, 3

}

(8)

The reason for this constraint will be clear at the end
of this section. Define the covariance matrix Ri

Ri = E[xix
H
i ] = AiRs,iA

H
i + σ2I (9)

where Rs,i = E[s(ωi)s(ωi)
H], and the superscript H

denotes transpose conjugate. Assume that Rs,i is full
rank. Then, the range of the P largest eigenvectors
is the same as range of Ai [1]. Let ei,1, ei,2, . . . , ei,P
be ordered eigenvectors of Ri from the largest to the
smallest. Define the matrices Fi andWi as

Fi = [ ei,1 ei,2 . . . ei,P ], (10)

Wi = [ ei,P+1 ei,P+2 . . . ei,M ]. (11)

Then,

R{Fi} = R{Ai} (12)

R{Wi} = N{AH
i } (13)

where R{·} and N{·} denote the range space, and the
null space, respectively.

Theorem 1 Let ∆ω = ωj − ωi. Then,

R{Φ(∆ω, θo)Fi} = R{Aj(θ̂)} (14)

where θ̂ = [θ̂1 . . . θ̂P ]
T , and

θ̂p = arcsin

{

ωi

ωj

sin θp +
∆ω

ωj

sin θ0

}

(15)

Proof: From (12), we know that there exists a full
rank P × P matrix Ti such that

Fi = AiTi (16)

Therefore,

Φ(∆ω, θo)Fi = Φ(∆ω, θo)AiTi

= Φ(∆ω, θo)[ai(ωi) . . . ap(ωi)]Ti

= [a(ωj , θ̂1) . . . a(ωj , θ̂P )]Ti

= Aj(θ̂)Ti (17)

This proves Theorem 1.
Theorem 1 tells us that a signal subspace of one

frequency bin can be linearly transformed into that of
other frequency with modified DOAs given by (7). If θo
in (14) is the same as one of the θp in the original sig-
nal subspace, this DOA is preserved in the new signal
subspace. This feature is a key idea of the new DOA
estimator.

Theorem 2 Assume that (8) holds. Let Ei for i =
2, . . . ,K be P × (M − P ) matrices such that

Ei = F
H
1 Φ(∆ωi, θ)

HWi (18)

where ∆ωi = ωi−ω1. Define the P×K(M−P ) matrix
D such that

D = [E2 E3 . . . EK] (19)

Then,

rank{D(θ)D(θ)H} =

{

P − 1 if θ = θp
P if θ 6= θp

(20)

Proof: From (13),

ap(ωi)
HWi = 0

T (21)

for all p = 1, 2, . . . , P . By Theorem 1, we know that

FH
1 Φ(∆ωi, θ)

H = TH
1 Ai(θ̂i)

H (22)

where

θ̂i,p = arcsin

{

ω1

ωi

sin θp +
ωi − ω1

ωi

sin θ

}

(23)

If θ = θp,

θ̂2,p = . . . = θ̂K,p = θp (24)

Therefore,

Ei = TH
1

















aH(ωi, θ̂1)Wi

...
aH(ωi, θp)Wi

...

aH(ωi, θ̂P )Wi

















(25)

= TH
1





∗
0T

∗



← pth row (26)
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When there are multiple sources, even if θ 6= θp,

there is some chance that one of the θ̂’s could be the
same as θj . In other words, it could happen that θ̂i,p =
θj . This ambiguity can be removed by using at least

three frequency bins. Even if θ̂i,p = θj , θ̂l,p 6= θj since
ωi 6= ωl. This is the reason why K should be at least
three. Therefore, only for θ = θp, D becomes

D = [E2 . . . EK] = T
H
1





∗
0T

∗



← pth row (27)

and it loses rank. Since the rank of DDH is p if and
only if the rank of D is p, equation (20) holds [6].
Therefore, we can find DOAs by looking for P different
θs that make DDH singular.

2.3. Process

In most cases, the covariance matrix is unavailable. In-
stead, an estimated covariance matrix would be used.
Due to errors in estimating the covariance matrix,DDH

always has full rank. Therefore, the condition number
should be used to find a singularity of DDH instead of
finding its rank. To estimate covariance matrices, the
total observation time is divided into several identical
blocks.
The estimation process is: 1) Divide the sensor out-

put into J identical blocks. 2) Find the DFT of J
blocks. 3) Find x̂i for pre-selected ωi, i = 1, . . . ,K.
4) Find the signal subspace F̂1 and the noise subspace
Ŵi for i = 2, . . . ,K by eigendecompostion of the co-
variance matrices, R̂i. 5) Find Êi using (18). 6) Find

θ̂ such that

θ̂ = argmax
θ̂

κ{D̂(θ)D̂(θ)H} (28)

where κ{·} denotes condition number, and D̂ is from
(19). Note that we are looking for P peaks of (28) like
MUSIC, not a global maximum.

2.4. Asymptotical results

According to [7], as J goes to infinity, R̂ converges to
the true R and so do the eigenvectors. In that case, D̂
becomesD. The bias of the estimator is asymptotically
zero. Finding the variance of the estimator is not easy
due to using the condition number.

3. SIMULATION

3.1. Simulation model

The new algorithm was tested by computer simulation
for comparison with CSSM [2]. An eight-sensor uni-
form linear array was considered in this simulation.

The source frequency band was 0 ∼ 100 Hz. The
distance between sensors is half the wavelength at a
center frequency of 50Hz, and the sampling frequency
is three times the highest frequency. Three wideband
sources are located at 8◦, 33◦, and 37◦, respectively.
The number of blocks is 100 and each of these blocks
has 256 samples. For CSSM, 13 frequency bins were
processed and the focussing frequency was 47 Hz. A
rotational signal-subspace (RSS) focussing matrix was
used [8]. The proposed method used 5 frequency bins
for processing. In both methods, a 256-point DFT was
used and it was assumed that the number of sources is
known, or estimated correctly.

3.2. Results

Figure 1 shows the mean of biases of the estimators
for three sources after 100 Monte-Carlo simulations.
The solid line represents the new method. The dot-
ted line and the dashed line represent CSSM with 0.2◦

and 0.5◦ focussing error, respectively. The bias of the
new method was the smallest, both at 8◦ and 33◦. For
the source at 37◦, CSSM with 0.2◦ focussing error was
the best. If the signal-to-noise ratio (SNR) is high and
the focussing error small, the CSSM estimator tends
to follow the focussing angle. The bias depends on the
focussing error. However, if the focussing angle error
is large, the estimator can not resolve close sources.
This is due to the disagreement between the DOA and
the focussing angle. These problems are more appar-
ent when the SNR is large. Variances of the estimator
showed different results. The new method showed the
highest variance in all three sources. The other two
cases showed similar variances. The root mean square
(RMS) error would summarize the simulation results
since it combines bias and variance together. Figure 2
shows the RMS error of the estimator. Except for the
source at 37◦, the proposed method has smaller RMS
error.

4. CONCLUSION

In this paper, we proposed a new DOA estimator for
wideband signal sources. The main advantage of this
new method is that it does not require any preprocess-
ing or focussing which is a disadvantage of previously
proposed methods and it is asymptotically unbiased.
Computer simulation showed that the performance of
the proposed method is better than or similar to that
of CSSM with small focussing errors. Since the fo-
cussing error depends on the preprocessing methods
as well as the SNR, we can not conclude that the pro-
posed method outperforms CSSM in general. However,
the new method would be preferred for applications
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(c) At 37◦

Fig. 1. Biases of the estimator at the three signal
sources. The solid line, the dashed line, and the dot-
ted line represent the new method, CSSM with 0.5◦

focussing error, and 0.2◦ focussing error, respectively.

where avoiding estimation bias is critical, or impinging
sources are harmonic signals that have most of their
energy at several discrete frequency bins.
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Fig. 2. RMS error of the estimator at the three signal
sources. The legend is same as Fig. 1.

[4] T.-S. Lee, “Efficient wide-band source localization
using beamforming invariance technique,” IEEE
Trans. Signal Processing, vol. 42, pp. 1376–1387,
June 1994.

[5] D.N. Swingler and J. Krolik, “Source location bias
in the coherently focused high-resolution broad-
band beamformer,” IEEE Trans. Acoust., Speech,
Signal Processing, vol. 37, no. 1, pp. 143–145, Jan.
1989.

[6] C.-T. Chen, Linear System Theory and Design,
Saunder College Publishing, 1984.

[7] P. Stoica and A. Nehorai, “MUSIC, maximum
likelihood, and cramer-rao bound,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. 37, no. 5,
pp. 720–741, May 1989.

[8] H. Hung and M. Kaveh, “Focusing matrices for
coherent signal-subspace processing,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-36,
no. 8, pp. 1272–1282, Aug. 1988.

V - 228

➡ ➠


