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ABSTRACT

The amplitude estimation of a signal whose waveform is
known (up to an unknown scaling factor) in the presence of
interference and noise is of interest in several applications
including using the emerging Quadrupole Resonance (QR)
technology for explosive detection. In such applications a
sensor array is often deployed for interference suppression.
This paper considers the complex amplitude estimation of a
known waveform signal whose array response is also known
a priori. We study a practical scenario where the interfer-
ence and noise is both spatially and temporally correlated.
We model the interference and noise vector as a multichan-
nel autoregressive (AR) random process. A cyclic iterative
ML (IML) method is presented. We show that in most cases
the IML method is superior to its simple ML counterpart
that ignores the temporal correlation of the interference and
noise.

1. INTRODUCTION

Estimating the signal parameters in the presence of inter-
ference and noise via array processing is often encountered
in practical applications (see, e.g., [1] and the references
therein). In several emerging applications, such as using
the Quadrupole Resonance (QR) technology for explosive
detection [2], the temporal signal waveform is known a pri-
ori up to an unknown scaling factor and the array response
is also given. In QR applications, for example, one of the
sensors receives the signal of interest as well as the inter-
ference and noise while the remaining sensors receive the
interference and noise only. Hence one of the elements of
the array steering vector for the signal of interest is one and
the remaining elements are zero. It is well known that the
temporal information on the signal can be utilized to effec-
tively suppress the interference and noise and hence to sig-
nificantly improve the estimation accuracy (see, e.g., [3]).
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However, exploiting both the temporal and spatial infor-
mation on the signal for interference suppression and sig-
nal parameter estimation is a practically important problem
that has not been fully investigated before to the best of
our knowledge. We presented in [4] a comparative study
of Capon and ML that utilize both the temporal and spa-
tial information on the signal for amplitude estimation in
the presence of temporally white but spatially colored in-
terference and noise. We showed that the ML estimate is
generally superior to Capon. In this paper, we consider a
more general scenario where the interference and noise are
both spatially and temporally correlated. We model the in-
terference and noise vector as a multichannel autoregressive
(AR) random process. A cyclic iterative ML (IML) method
is presented. We show that in most cases the IML method is
superior to its simple ML counterpart that ignores the tem-
poral correlation of the interference and noise.

2. SIMPLE MAXIMUM LIKELIHOOD METHOD

We use the following data model in [4],
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where ��� �"!$#&%
' , �(�)����������������� , denotes the � th ar-
ray output vector (with * being the number of sensors and� being the number of snapshots), the array steering vec-
tor ���+!$#,%-' of the signal of interest is known, � is the
unknown complex amplitude of the signal whose temporal
waveform . 	 �0/21�43 ' is known. We model the interference and
noise term � � �5!$#,%-' as a zero-mean temporally white
but spatially colored circularly symmetric complex Gaus-
sian random process with an unknown and arbitrary spatial
covariance matrix 6 . The ML method estimates the sig-
nal amplitude by maximizing the likelihood function of the
random vectors . ��� /21�43 ' . We show in [4] that
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is the average power of the known waveform. In the follow-
ing sections, we will refer to the ML method presented here
that ignores the temporal correlation of the interference and
noise as the simple ML (SML) method only for distinction
purposes.

3. ITERATIVE MAXIMUM LIKELIHOOD
METHOD

The previous study assumed that the interference and noise
term in (1) is spatially colored but temporally white. In this
section, we model the interference and noise vector as a
multichannel autoregressive (AR) random process and pro-
pose an iterative ML (IML) method based on the cyclic op-
timization approach.

3.1. Data Model

Consider the data model:

� � ����� 	 � �
	 � ����� � � ��� ����� ����� (6)

which is the same as the one in (1) except that the interfer-
ence and noise term now satisfies the following AR Equa-
tion ��
�� < '�� 	 � � � � � (7)

where
� < ' is the unit delay operator,��
�� < '�� ��� � � ' � < ' � � � � < � � ����� � ����� < � � (8)

and ��� � � � 8��� � 6! � � � (9)

where  � � denotes the Kronecker delta. Note that if only
the interference component in 	$� is a multichannel AR pro-
cess while the noise component in 	$� is white temporally,
then the interference and noise term will be a multichannel
autoregressive and moving average random process, which
can still be approximated by a multichannel AR process.
The SNR for the data model in (6) is defined as

SNR � *
? @ � � � �"$# 
�%'& � � (10)

where
% &

is the covariance matrix of . 	 �0/ .

3.2. Algorithm

Conditioned on the first ( data vectors . � �0/
�
�43 ' , maximizing

the log-likelihood function is equivalent to minimizing
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with respect to both � and

� � � �
' �
� � � ����� � �!� � . Hence

the optimization problem becomes very complicated. Here
we propose an iterative ML (IML) approach to solve this
problem.

To begin with, we obtain an initial estimate
7�103254 of � by

using the SML method (cf (2)). For a given estimate
7� , let6 � ��� � � � 7� 	 � . From (11), we get,
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where
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It’s easy to show that the solution to (12) is
7� � � 7%'G5H 7% < 'H � (13)

which is the multichannel Prony estimate of
�

. We as-
sume that the order ( of the multichannel random process
AR(( ) is known. If ( is unknown, it can be estimated, for
instance, by using the Generalized Akaike Information Cri-
terion (GAIC).

For a given
7�

, we obtain an improved estimate of � by
minimizing the following:
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(14)
First, we consider the case of a known damped (or undamped)
sinusoidal signal, i.e., 	 � �MLN0 <PORQ ,TSVU Q 4 � with known fre-
quency W @ and damping factor X @ .

LetY
�$� 7��
�� < '�� ��� �[Z � 7��
�� < '\� � ] 3_^5`Na Q$b�cedfQ � �

Note that the length of the new data sequence

Y
� � � � ( �� � ����� � � , is � � ( instead of � . The solution to the above

problem is given by the ML estimator proposed in Section
2: 7� � Z 8 : < 'g >

Y
? @ Z 8 : < 'g Z (15)
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where
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and
? @ � '1 <

� � 1 < �� 3 ' � 	 � � � is the average power of the known

waveform . 	 �0/21�43 ��, ' . The IML approach maximizes the

likelihood function cyclically. We set
7� 03254 ��� and ob-

tain
7�103254 � 7��� # 1 . We then iterate the following two steps

untill the solution converges, i.e., when the two consecutive
estimates

7�10��:4 and
7�10�� , 'V4 are sufficiently close:7� 0�� , ' 4 � arg 7	��
;
�


 � � ��� 7� 0��:4 � . ��� / � �43 ' � � (17)

which is given by (13) with
7� replaced by

7� 0��:4 , and7� 0�� , 'V4 � arg 7���
� �

 � � � � 7� 0�� , 'V4 � . � �0/ � �43 ' � � (18)

which is given by (15) with
7�

replaced by
7� 0�� , ' 4 .

Obviously the likelihood function never decreases in any
iteration. In the simulations reported in the next section we
found that IML converges in 2 or 3 iterations. Hence the
IML estimator is computationally quite efficient.

Next, we consider the case of an arbitrary known wave-
form signal. LetY
��� 7��
�� < '\� ��� �����$� 7��
�� < '�� �-	�� ����� ( ��� � ����� � �

� #&%P0 1 < � 4 � � Y ��,
'
Y ��, � �����

Y
1 �

and �
#,%P0 1 < � 4 � � � ��, ' � ��, � ����� � 1 � �

Also let � be an orthogonal projection matrix defined as

� � � 8 
 � 8 ��� � (19)

where

 � 8 � � is the Moore-Penrose pseudo-inverse of

� 8 ,
and let ��� � � � � .

Then (14) can be written concisely in a matrix form:7� � arg 7 8:9� **

 � � � � � 
 � � � � � 8 **� arg 7 8:9� **

 � � � � � 
 � � � � � 
 � � � � � 8 ** (20)

� arg 7 8:9� **

 � � � � � � 
 � � � � � � 8 � � � � � 8 **C arg 7 8:9� **

 � � � � � � 
 � � � � � � 8 ��: g ** (21)

� arg 7 8:9� **

 � � � � � � 
 � � � � � � 8 : < 'g � � ** � : g � �

(22)

Note that minimizing the cost function in (22) requires
a two-dimensional search over the parameter (since � is
complex-valued). To avoid the search, we use Lemma 1
to obtain an approximate estimate of � .

Lemma 1. For a large data sample number � , minimizing� ' � **

 � � � � � � 
 � � � � � � 8 : < 'g � � ** � is asymptoti-

cally equivalent to minimizing

� � � "5# - 
 � � � � � � 8 : < 'g 
 � � � � � � . � (23)

Proof. Omitted.

It follows from (23) that minimizing
� � with respect to� yields 7� � "5# 
 � 8 : < 'g � �"5# 
 � 8 : < 'g � � � (24)

where we remind the reader that : g � � ��� � 8 . Because
(24) is only an approximate solution to (22) in this more
general case, the IML method based on (24) is no longer
an iterative ML approach (but we still keep the name for
convenience) and consequently it is not theoretically guar-
anteed that IML will yield a more accurate solution than the
SML method. However, in our numerical examples, IML
outperforms SML in most cases even for modest data sam-
ple lengths. To avoid any “convergence problem” in this
case in which IML is no longer an iterative minimizer, we
simply pre-impose the number of iterations to be 3.

4. NUMERICAL EXAMPLES

Consider the case where the steering vector is given by � �� �����	� ��� with

 � � � denoting the transpose. First, we as-

sume that 	�� �"� , � �"� ���9������� � � � which is a sinusoid sig-
nal with frequency zero. Then we assume 	2� to be a known
BPSK signal which stands for an arbitary waveform signal.
In all the examples, we assume that � � � . We generate a
multichannel AR(2) random process with the method in [5].
The autocorrelation matrices are given by� % & 
 � � �! � �#"$"�%  < � %@ & 
('�. � "*)0� � �,+ 
.- ��/ � � � W / � (25)

and %'& 
 � � � % & 8 
 � � � � ���0�-����� ����� � ( � (26)

where " � '
SNR , " @ controls the spatial correlation, "1)

partly decides the temporal correlation, and W defines the
spectral peak location of the colored interference and noise
in each channel. The data sample number is � �32�� . When
we use the true autoregressive matrix

�
in the IML instead

of the estimated one, we refer to the method as the known-
AR ML (KML) approach. We include KML for compar-
ison purposes only. We obtain the empirical MSEs of the
estimates by using 500 Monte-Carlo trials.

For the constant signal case, our simulations results showed
in Figures 1 and 2 suggest as follows:

A: Both IML and SML work better for large W and/or
small "*) ,
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B: IML is slightly worse than SML for small W and/or
large "$) ,

C: IML is significantly better than SML for large W and/or
small "$) .

These observations can be explained by examining the sig-
nal and the interference and noise terms in the temporal fre-
quency domain. For large W , the signal is separated from
the interference and noise in the temporal frequency do-
main, which benefits both methods. Similarly, smaller "()
means higher correlation in the temporal time domain or
more peaky spectra in the temporal frequency domain. Hence
both estimators perform better for this case when W is away
from zero. This explains Observation A. Next, we note that
a large "$) means low correlation in the temporal domain and
hence the interference and noise vector is approximately
temporally white. KML is approximately SML in such a
case. Since IML is inferior to KML, IML is also slightly
worse than SML. For small W , the signal and the interfer-
ence and noise terms are not well separated in the temporal
frequency domain. This explains Observation B. Observa-
tion C is as expected.

Finally, we consider the known BPSK signal case. We
see from Figure 3 that the IML method significantly out-
performs SML (over � � dB) even for modestly temporally
correlated interference and noise ( "1) � � � � ) although it is
slightly inferior to SML when the temporal correlation of
the interference and noise is weak ( "1) � � ). Our simula-
tions also suggest that a known wideband signal makes sup-
pressing temporally correlated interference and noise easier
than a narrowband one.
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Fig. 1. MSEs of IML, SML and KML estimates for a con-
stant signal vs. SNR when W � � and " @ � � � �
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