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ABSTRACT

We address the problem of data independent robust array
interpolation over large angular sectors. Previous interpo-
lation methods apply the root-MUSIC principle to interpo-
lation data of a predefined virtual ULA manifold. These
methods either suffer from severely biased direction-of-
arrival estimates due to interpolation errors or rely on data
dependent interpolation matrix design. In this paper a new
interpolation approach is proposed. Instead of transform-
ing the original array geometry to the rather restrictive ULA
structure, here interpolation is performed with the objective
to create a virtual array manifold which is a shifted version
of the real array manifold. This artificial shift-invariance
can be exploited by the well-known ESPRIT algorithm. A
joint design of virtual array geometry and interpolation ma-
trix yields additional degrees of freedom which reduce inter-
polation errors and allow to increase the interpolation sector.
The new algorithm enjoys both simple design procedure and
fast implementation and offers reliable DOA estimation for
a wide range of different scenarios.

1. INTRODUCTION

Specific redundancies in array structures can be exploited
to simplify implementations of subspace direction find-
ing methods. For example, the Uniform Linear Array
(ULA) allows the formulation of the computationally effi-
cient search-free root-MUSIC and MODE algorithms [1],
[2]. Similarly, sensor arrays with shift-invariances facili-
tate search-free formulations of subspace methods, as for
example conventional and multiple invariance ESPRIT [3],
UCA root-MUSIC and UCA-ESPRIT [4], multiple invari-
ance root-MUSIC [5] and RARE [6].

The idea of array interpolation techniques is to make
search-free estimation methods applicable to the general
class of “non-structured” arrays. An early approach by
Friedlander [7] is based on a linear transformation of the
original array manifold to a desired ULA manifold over
a preliminary defined directional sector. Even though this
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method has several attractive properties, it is bounded to
comparably small interpolation sectors and its DOA esti-
mation performance is severely limited by a strong bias in
the root-MUSIC estimates. The bias results from interpo-
lation errors between the interpolated and the desired array
response. Several authors have addressed this issue and nu-
merous methods have been designed to essentially reduce
the bias [8], [9]. Unfortunately, these methods incorporate
data measurements into the interpolation matrix design and
therefore require the matrix computation to be done “on-
line”, leading to increased computational complexity.

In this paper, we propose a new interpolation method
which is based on the idea of including the virtual array de-
sign into the interpolation matrix design procedure. Instead
of performing an interpolation onto a preliminary specified
array structure, in the new approach the virtual array is de-
signed to be a mathematically shifted version of the original
array. In contrast to [10], the virtual array manifold is not
limited to belong to a physically realizable array structure.
Note that this artificially generated shift-invariance does not
make any demands on the physical array structure like con-
ventional ESPRIT does.

Relaxation of the restrictions imposed on the virtual ar-
ray yields several important advantages: reduction of inter-
polation error and estimation bias which allows to increase
the extent of the sector that interpolation can successfully
be applied on, simplification of the interpolation design and
reliability of the solution in many different scenarios.

2. ARRAY SIGNAL MODEL

Consider a sensor array composed of N sensor elements
with the nth sensor located at the position d, , and d,
in the x- and y-direction, respectively. Let L narrowband
plane waves impinge on the array from unknown DOAs.
For simplicity, we assume that all signal sources are located
in the z-y-plane where the DOA of the Ith source signal is
fully represented by its azimuth angle 6; € [0, 27r] measured
counterclockwise from the z-axis. The array response to a
source signal arriving from the DOA 6 is given by a() =
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[e—jk(d,,l cos O+d, 1 sin 0) e—ik(ds, N cos 0+dy, v sin 9)] T
.

where (-) denotes transposition and k denotes the wave-
number. The array output vector can be modeled as

x(t) = A(@)s(t) +n(t), t=1,2,....M (1)

where

A(0) = [a(61),...,a(0L)] )

is the (N'xL) steering matrix, 8 =61, ..., 0.]" is the vector
of true source DOAs , s(t) is the (L x 1) vector containing
the complex signal envelopes, n(t) is the (N x 1) vector
of zero-mean spatially white sensor noise of variance o2
and M is the number of snapshots. The spatial covariance
matrix corresponding to (1) and its eigendecomposition are
given by

R =E {x(t)x"(t)} = A(0) S A"(0) + 21

= E,AE! + E,ALEY )
where S = E {s(t)s”(t)} is the (L x L) source covari-
ance matrix, I is the identity matrix, ()H denotes Hermitian
transposition and E {-} is the statistical expectation opera-
tor. The (Lx L) and the (N—L)x(IN—L) diagonal matrices
Ag and A, contain the signal- and noise-subspace eigenval-
ues of R, respectively. In turn, the columns of the (N x L)
and Nx(N—L) matrices Eq and E,, denote the correspond-
ing signal- and noise-subspace eigenvectors. Similarly, the
sample estimate of the covariance matrix (3) can be decom-
posed as

1M

i > x(t)x"(t) = BAEI + BuALBL L @)

t=1

R:

3. VIRTUAL SHIFT INVARIANCES

The idea of conventional array interpolation techniques is a
transformation of the real array manifold over a given an-
gular sector © = [fin, Omax] Onto a preliminary specified
virtual array manifold. That is, a (N x N) interpolation ma-
trix B is designed that satisfies

Ba(f) ~ a(f), 0€0O (%)
where a(f) and Z(6) are the (N x 1) and (N x 1) steering
vectors of the real and virtual array, respectively, and N is
the number of virtual sensors. The virtual array manifold
a(0) usually corresponds to a uniform linear array (ULA). A
major difficulty emerging in this approach is the comparably
restrictive constraint imposed by the a priori choice of the
virtual array geometry.

Moreover, conventional array interpolation techniques
share the fact that the selection of the parameters that define
the virtual ULA geometry and allow best interpolation and
estimation results is not a part of the optimization problem

which is formulated for the interpolation matrix calculation.
The parameters in question are the number of virtual sen-
sors, the inter-element spacing, the array orientation and the
position of the array center and are chosen heuristically.

In this paper we present a new interpolation approach
which has the ability to overcome those drawbacks. Instead
of an interpolation from the real array manifold to a prede-
fined ULA manifold, here the target geometry is a shifted
version of the real array manifold:

a(0) =z(0)a(d), 0e€0o. (6)
The phase shift z(f) € C may theoretically be any invertible
function; we recommend to use an exponential form like
2(0) = €19, 327 0s(0) or ¢i275in(¥) - Note that due to the
construction of the virtual array we have N =N here.

The computation of the interpolation matrix B is now
done in accordance to Friedlander’s method [7]. K repre-
sentative directions 61, ...,0x are chosen from the inter-
polation sector ©. The sum of the quadratic interpolation
errors in these directions,

K
F(B) =Y [|Ba(6,) - 46| = |BC-C|%.
=1

is minimized with respect to B. In the last equality we used
the matrix C consisting of the steering vectors of the sample
directions: C = [a(6),...,a(fx)]. Similarly, C contains
the virtual steering vectors and is calculated as Cc=cCz,
where Z contains the shifting terms:

Z = diag{z(61),...,2(0x)} (8)

The minimizing argument of the least-squares optimization
criterion (7) can now easily be calculated as B = cct,
where (-)T denotes the Moore-Penrose pseudoinverse of an
arbitrary matrix; Ct = (CHC)~!C¥ in the case that the
involved inverse is defined. Note that this calculation of
high computational effort has to be done only in the design
phase, not in the “online” algorithm application.

Even if we are only generating a shifted version of the
array manifold, the noise characteristics of the original and
transformed output signals can be quite different. The co-
variance matrix of the real array is defined in (3), whereas
the covariance matrix of the virtual array is given by

R = BRB = ASA" + +2BB”, 9)

with A=BA(8). Obviously, the sensor noise of the vir-
tual array is generally colored. In [7], where the root-
MUSIC algorithm is applied to a virtual uniform linear ar-
ray, noise-prewhitening by multiplication with (BB)~1/2
is inevitable. In practice the prewhitening matrix is of-
ten ill-conditioned, leading to numerical difficulties in the
estimation procedure. Here, where we use the ESPRIT
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algorithm instead, noise-prewhitening would destroy the
shift-invariance relating the physical to the virtual array.
A more sophisticated procedure, which turns out to yield
essential benefits, is developed from the singular-value-
decomposition of the interpolation matrix

B=urv# (10)

with the unitary (N x N) matrices U and V and the (N x
N) diagonal matrix I containing the singular values of B
arranged in non-increasing order. Multiplying both sides of
equation (5) with U from the left and defining the two

interpolation matrices B; = U and B, = T’V yields
UfBa(9) = UUTr v7a(h) = Bya(h) ~ an
~ U5(0) = UHa(h)z() = Bra(h)z(h) .

Clearly, the two virtual array manifolds &, (0) = B4 a(0)
and 82(0) = By a(d) are related to each other by the shift
function: 82(0) ~ z(0) &,(0) for 6 € O.

It is easily verified that the sensor noise corresponding
to both virtual arrays is spatially white with the noise co-
variance matrices

Q=021 and Q,=02T?. (12)

Interestingly, we observe that the noise variances of the sec-
ond virtual array are proportional to the squared singular
values of the interpolation matrix B. In other words, there
are certain virtual sensors whose signals are more degraded
by sensor noise than others. It is important to note that
due to the linear transformation each of the sensors of both
virtual arrays generally contains information of all physical
Sensors.

With by ; representing the ith row of B and making use
of equation (12), we define the (data independent) Signal-
to-Noise Ratio (SNR) of the ith sensor in the second virtual
array averaged over the representative directions as

[b2,iC|”
K42

where 71, ...,y are the singular values of B.

The dimension reduction of the array data in order
to further reduce the computational load of the direction-
finding algorithm is a primary objective of several so-called
beamspace methods, for example [11]. Equation (13) pro-
vides a simple and intuitive criterion for the appropriate
choice of the number of virtual sensor elements, in a sense
that we simply remove those sensors of the virtual arrays
which correspond to an average SNR below a given thresh-
old 7. That is, the ith row of the interpolation matrices B
and B is removed if SNR; < 7 fori = 1,..., N. This
may be formulated using a suitably designed (N x N ) selec-
tion matrix J such that the interpolation matrices of reduced
dimension are

B, =JB, fori=1,2. (14)

SNR,; = (13)

4. INTERPOLATED ESPRIT

The derivation of the algorithm is very similar to the original
ESPRIT approach [3]. Neglecting the interpolation errors
(which means assuming the approximation (5) to be fulfilled
exactly) and using equation (11), we get

BAZ=B,A (15)

with the (unknown) physical steering matrix A=A (0) and
the matrix Z =Z(0) containing the values of the shift func-
tion for the true DOAs 61, ...,60;. By definition, the ma-
trix Eg from equation (3) and the steering matrix A span
the same subspace. Therefore, these matrices are related to
each other by a full rank matrix T

A =E,T (16)

Substituting A in (15) using the last equation and multiply-
ing with T~! from the right, we end up with

B, E,¥ =B, E,, 17
where we used the definition
U=TZT '. (18)

Note that W is generated from Z by a similarity transfor-
mation, which means that the eigenvalues of W are the di-
agonal elements of Z. Hence, with an estimate ¥ of ¥ we
can obtain estimates for the DOAs by applying the inversion
formula 6 = 2~ ()\l) to the eigenvalues )\1, .. )\L of .

An estimate for the matrix ¥ can be found by solving
equation (17) in a weighted least-squares sense (or similarly,
in a weighted total-least-squares sense):

& — argmin { | W (B.E.® - BoB,) ||, }
19)
(W B.E ) W:2B,E
The diagonal matrix W = JWJ7 consists of the sensor-
specific SNR values defined in equation (13) (that is, the
(NxN) matrix W consists of all SNR values). The weight-
ing emphasizes the influence of the virtual sensors with the
highest averaged SNR. Like the interpolation matrices, the
weighting matrix is independent of the sensor data and can
be computed in advance.

5. SIMULATION RESULTS

In order to illustrate the various advantages of the new inter-
polation approach we compute the Root-Mean-Square Error
(RMSE) of the DOA estimation obtained by Interpolated
ESPRIT, averaged over a set of different array configuration
and source signal scenarios. We consider a planar sensor ar-
ray composed of N = 15 sensors. In each simulation run,
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sensor positions are randomly drawn from a circular uni-
form distribution with radius = A located in the x-y-plane
and centered around the origin of a spherical coordinate sys-
tem. Similarly, in each simulation run the locations of two
uncorrelated and equipowered signal sources with a con-
stant angular separation of #; — 6 =8° are drawn uniformly
from the interval [—45°, 45°]. The number of snapshots is
M = 100. In total, 1000 independent simulation runs are
performed to estimate the RMSE’s which are displayed in
Fig. 1 versus spectral MUSIC and the corresponding aver-
aged Cramer-Rao Bound (CRB) of the physical sensor ar-
rays. The interpolation sector for the design of the interpo-
lation matrices is [—45°, 45°] (to get a fair comparison, this
is also where the MUSIC spectrum was searched for peaks).
The shift function is z(#) = e/2™ (%) and 7 =1/4 is chosen
as a threshold for the selection of the virtual sensors leading
to an averaged virtual array length of N ~ 10 sensors.

Note that averaging over the various sensor array and
source location scenarios emphasizes the worst case perfor-
mance of the proposed methods. Also note that conven-
tional data independent interpolation methods like Friedlan-
der’s interpolation approach [7] completely fail to resolve
the sources in the described scenarios and therefore are not
helpful to be used as a benchmark.

The simulation results validate the essential perfor-
mance improvement provided by the proposed method. The
RMSE of the new approach is not longer limited by the bias
of the DOA estimates. Its absolute value slightly exceeds
the results we obtained with conventional MUSIC, but this
is a small price for the huge saving in computational load
and algorithm complexity. In regions of low SNR (below 15
dB in Fig. 1) Interpolated ESPRIT even outperforms spec-
tral MUSIC, because the new algorithm shows a very favor-
able threshold behavior.

Furthermore, the general setting chosen in the simula-
tions shows both the reliability of the method and the sim-
plicity of the interpolation design which makes the method
applicable to a wide class of scenarios.
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Fig. 1. RMSE of DOA estimation versus SNR.
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