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ABSTRACT
In this work we present a new direction of arrival (DOA) esti-

mation scheme that applies to uniform linear arrays. We propose to
get several estimates by applying the Pisarenko harmonic retrieval
(PHR) method to different sets of covariances and to select the best
estimate by using the maximum likelihood (ML) criterion. More
generally we would like to promote the idea that it is often more
efficient to select the best among several estimates rather than to
combine them. This requires of course the existence of a decision
criterion which indeed conveys additional information.

1. INTRODUCTION

In estimation problems, the maximum likelihood (ML) method is
generally taken as the reference since it leads to efficient estima-
tors that attain asymptotically the Cramer-Rao bound (CRB). In
direction of arrival (DOA) estimation it has only had limited suc-
cess since the optimization of the likelihood function is computa-
tionally complex. For difficult scenarios, it is an ill-conditionned
function with numerous local extrema. This means that an excel-
lent initial point has to be known in order to draw the benefits from
the ML method and the major problem is actually to find a good
initial point.

We consider the standard situation of a linear array with�
equispaced sensors receiving� narrow-band uncorrelated sources
in spatially white noise. We assume� to be known.

The basic Pisarenko harmonic retrieval (PHR) method uses a
minimal set of covariances that has the same number of degrees
of freedom as the unknown parameter set. It achieves a change of
variables and transforms a set of estimated covariances into an es-
timate (i.e. a set of parameter estimates). There is no optimization
involved in this transformation that is one to one. We apply a simi-
lar method to several minimal sets of covariances to obtain several
estimates of the unknown parameters. We then evaluate the ML
criterion at each of these estimates to select thebest i.e. the most
likely. The resulting estimate is in general quite efficient and its
variance close to the Cramer Rao bounds.

While in this DOA estimation context, we propose to get a set
of competing estimates by applying the PHR to several minimal
sets of covariances other estimates can be proposed and tested.
The method of moments can quite generally be used to generate
several potential estimates. While optimally combining them is
then an alternative to the approach we propose, it is generally more
cumbersome to get the optimal weights and the resulting estimate
might well be less efficient. The idea is not really new and has
been promoted in [1] for the case of real sinusoids in noise. Similar
developments have also been proposed in e.g. [2], [3].

This paper is organized as follows. The signal model is de-
scribed in section 2. In section 3 and 4 we develop the procedure

we propose. In section 5 we explain why its statistical properties
are hard to assess. Finally simulations are presented in section 6
and in the Appendix.

2. SIGNAL MODEL

We consider a linear array with� equispaced sensors with spac-
ing half a wave-length. It receives signals from� far field narrow-
band uncorrelated sources in additive white noise. We denote��

the complex order-� output-vector (snapshot) of the array. These
vectors are modeled as independent, identically distributed com-
plex gaussian variables with zero mean and covariance matrix:

� �
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��������������
� � �	 (1)

where� is the power of the additive white noise,������ is the
steering vector at spatial frequency�� associated with the p-th
source whose power is denoted��. We define the signal to noise
ratio (SNR) of source
 as �� � ����. The spatial frequency
� is related to the bearing
 with respect to broadside by� �
����
���. The steering vector at spatial frequency� is then����� �
�	
��������� with 
 � � � ��� and� �

�
� � � �

�
. The covari-

ance matrix� has thus a Toeplitz structure and is entirely defined
by its first column. Since we assume� the number of sources to be
known, there are�� � � unknowns:� � � ���� ����������� � ��.
An estimate�� of � is given by:
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where� is the number of snapshots. Under the modeling assump-
tions made above,�� in (2) is a sample from a complex Wishart
distribution with mean� and� degrees of freedom. Maximizing
the likelihood of the observations amounts then to minimize [4] :

���� � ��� ������� tr� ��������� (3)
with respect to the unknowns in�, where��� denotes the deter-
minant of the matrix� and tr��� its trace. This is a difficult task
since this function is highly non-linear in the unknowns.

3. DEVELOPMENT

3.1. Getting several estimates

The method of moments [9] consists in replacing the full informa-
tion, here ��, by a smaller dimensional statistic that still conveys
enough information on the unknowns in� and to base the estimate
on this insufficient statistic. Quite often one uses as statistic a set
of moments hence the name of the method. As the number of ob-
servations increases, these moments converge in some sense to the
true moments that are a function of the unknowns�. The estimate
� is then obtained by model-fitting or inversion of this function.
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In the DOA estmation case, a first possibility is to consider the
set of P+1 covariances denoted�� � ���� ��� ��� ��� extracted
from the first column of the Toeplitz matrix�. The set�� has
2P+1 real degrees of freedom and its expression as a function of
� is easily deduced from (1). Caratheodory’s theorem [5] estab-
lishes that the transformation from�� to � is generically one to
one. The procedure that performs this inversion is known as the
basic Pisarenko Harmonic Retrieval (PHR) method [6]. Let��� be
the estimate of� obtained by applying the PHR method to��� an
estimate of��. This estimate is consistent asymptotically in� but
is known to have poor efficiency.

Many other sets of covariances can be used similarly to�� to
yield possibly more efficient estimates. We seek those for which
the inverse transformation is easy to implement.

Let us consider the sets�� � ���� ��� ���� ��� ����. For
k=1 we get the set considered above and for� � � it is the set
of P+1 covariances obtained by downsampling the covariance se-
quence by a factor�. Though these sets have precisely the right
number of degrees of freedom, the transformation from�� to �
is one to many. This is a result of the ambiguity introduced by
downsampling. The covariance sequence in�� leads to an aliased
spectrum and each spatial frequency in the aliased spectrum has
generically� potential determinations. More precisely a frequency
� �� � �

�
� �

�
� of the aliased spectrum can be induced by any of

the � frequencies�
�
� �

�
�� � �

�
� �

�
� with � � �� of the initial

spectrum. There are thus generically�� distinct P-sources sce-
narios that yield the same�� and it remains to find the good de-
termination. We propose to use the ML criterion (3) to select the
good determination. This may be quite time consuming and there
are several means to drastically reduce this burden. One can use
the output of the standard beamformer to locate the frequency do-
main(s) of interest and only evaluate the ML criterion for determi-
nations falling in these areas. Another mean to solve the ambiguity
consists in using simultaneously the estimates given by different
�� ’s to localize the frequencies that are stable over several k’s. In
the two sources scenario described in section 6 the plot of the es-
timates obtained from 9 different�� ’s is shown in Figure 1. Only
the 2 central frequencies around�� � 
 and�� � �
��� remain
stable while the others move in an orderly fashion

One can also observe in this figure that for a fixed� the dis-
tance��� between 2 determinations is much larger than the reso-
lution which is typically �

�
. Since the resolution is linked to the

size of the domain of attraction of the ML function, this means
that for each frequency�� at most one of the� determinations is
within the domain of attraction of the global minimum of the ML
function and there is thus no risk of confusion. We will never end
up with the wrong determination if we use the ML criterion (3) to
select it.

3.2. Getting a single ’best’ estimate
For an N-sensor array, there are�	
� � floor����

�
� different

minimal covariance sets�� and thus�	
� distinct estimates. To
come up with an unique one having better efficiency one can either
combine them or select thebest among them.

Finding the optimal way to combine the��� ’s requires the knowl-
edge of the cross-correlation matrix between the estimates which
is in general cumbersome to evaluate. This approach seems feasi-
ble only in the single source case.

On the other hand, except in the single source case (see the
Appendix), the single��� that is the most efficient depends upon
the scenario and is thus unknown beforehand. Indeed for any fixed
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Figure 1: The frequency determinations for downsampling rates
k=1 to 9. The 2 central frequencies remain stable while the others
move around.

value of�, it is easy to build a scenario for which 2 or more sources
collapse into a single one in�� making the corresponding estimate
useless.

We therefore propose to select the singlebest estimate by us-
ing again the ML criterion (3). Once all the estimates��� are avail-
able, we compare their likelihoods������ and keep the most likely,
we denote���. The estimate that is retained in this way is realisa-
tion dependent and if one performs a large number of simulations
all ��� ’s will contribute more or less frequently, see Figure 2. This
actually allows��� to be more efficient than any of the individual
��� ’s.

4. DESCRIPTION OF THE ALGORITHM

Given the signal model and the notations defined in section 2 we
propose a procedure that allows to estimate the 2P+1 unknowns in
� using as observations the estimated covariance matrix�� (2).

We first concentrate the information by toeplerizing�� to get
��� . In the analysis and simulations below, we do so by averag-
ing the diagonals. All the information is now conveyed by the�

covariances����� present in the first column of��� .
We build�	
� different subsets of covariances:

��� � ����� ���� ����� ��� ������ � � � � �	
� � floor����
�

�

from which we deduce�	
� different estimates���. To do so we

construct the function����� that relates� to �� and apply its in-
verse to��� to get���.

For k=1, the inverse is unique [5] and the inversion is per-
formed by applying the PHR method [6]. It consists in the follow-
ing steps:

� built the covariance matrix with Toeplitz structure of order
P+1 associated with���

� �� the estimate of� is its smallest eigenvalue
� compute itssmallest eigenvector, say��
 �� ����� �
� the P roots of�
 � ��� � ���� �� �

� � 
 are then distinct
and on the unit circle, rewritte them as����

��� with � �

�
� ��� �

�

�

the estimates of��
� obtain the estimates��� by solving a the set of linear equa-

tions deduced from������ with ��� in place of��.
For k�1, the inverse transformation is one to many. We first

apply the PHR method described above to���. Let ���, 
 � (1, P)
be the frequency estimates. To each��� one associates� potential
determinations:

������ �
���
�

�
�

�
� � � �� � ��� � ������ � �� (4)
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� built �� distinct estimates�� by supplementing the frequency
estimates: one among the� determinations������ for 
 � (1, P)
with the amplitudes estimates.

� evaluate the ML criterion with����� in place of� in (3) and
retain the most likely��� among the�� .

Once the�	
� estimates��� are available retain again the most
likely, the one that optimizes (3) to get the estimate���.

We gave in section 3.1 some hints that allow to reduce the
number of evaluations to be performed from�� to just a few.

We shall see from the simulations below that��� is quite effi-
cient and its variance close to the Cramer Rao bounds. One can
nevertheless use��� as an initial point of an iterative optimization
routine of the likelihood (3) since��� is in general consistent, the
estimate should converge to the global optimum of the likelihood
function.

5. STATISTICAL ANALYSIS

A statistical analysis is indeed extremely difficult because the in-
dex of the estimate��� that is retained is realization-dependent. The
fact that the different estimates are correlated further complicates
the analysis. This is probably the price to pay for the simplicity
of the fusion procedure. As in the much more cumbersome op-
timal weighting schemes the efficiency is better than those of the
individual estimates and can be quite close to the CR bounds.

Even in the usually trivial single source case a complete sta-
tistical analysis seems out of reach. We indicate in the Appendix
how to compute the variances of the�	
� individual estimates of
the unique spatial frequency� taking into account the “toepleriza-
tion” of �� and assuming the ML criterion systematically selects
the good determination (7) which is legitimate in this case. We
also detail simulation results to highlight how realization depen-
dent our estimate is even in the single source case, see Figure 2.
While the variance say�� of each of the�	
� individual estimates
is quite easy to obtain as well as the correlations between them, it
is probably impossible to evaluate the variance of the final estimate
���.

As a first step towards an approximate analysis one could prob-
ably say that��� is the result of the following model:

� draw a gaussian random variable with mean the true value
and variance���, the CRB

� draw �	
� gaussian random variables with mean the true
value and variance the theoretical variances�� of the estimates

� keep among these�	
� values the one that is closest to the
CR sample.

Even if it were possible to get a rough estimate of the variance
of the so-obtained random variable this analysis takes into account
neither the correlation between the�	
� individual estimates nor
their correlations with the first variable, the minimum of the cur-
rent likelihood function which plays a decisive role.

Since even in the single source case an analysis seems out of
reach, let us resort to simulations to assess the potentialities of the
approach in more realistic situations.

6. SIMULATION RESULTS

The single source case is detailed in the Appendix. To test the
resolution power of the approach, we consider two closely spaced
equipowered sources with an SNR=0 dB (i.e.���� � � in (1)),

� � �

 and� � �
 and a spatial frequency separation of
Æ� � ������ i.e. one fourth of the standard resolution. We built
�	
�= 8 estimates and the algorithm separates the two sources
with a frequency estimate variance slightly higher than twice the
CRB. The results are presented in Table 1. for 1000 realizations.
Since the standard deviations of the estimates are about a fourth of
the source separation the results are meaningful. Few estimation
procedures would be able to separate these sources.

true values mean variance CR bound

��= 1 1.009 .134 .092
��= 1 .993 .138 .092
��= 0 -.0005 9.00�
�� 3.72�
��

��= .0125 .0131 8.88�
�� 3.72�
��

Table 1: The means and variances observed over 1000 independent
realizations for the two sources separation case.

We now consider an example taken from [8]. It consists of
3 equipowered sources with an SNR=-5dB which are located at
bearings equal to (24, 27, 45) degrees with respect to broadside,
� � �

 and� � ��. The separation of the two close sources
is one third of the standard resolution. The results are presented
in Table 2. for 1000 independent realizations. The variance on
the bearings is again 2 to 3 times the CRB. There are 4 potential
�� ’s but the estimates given by�� is never retained, those of��
quite seldom and those of�� and�� respectively about one and
two thirds of the realization.

In both cases the computational complexity is quite low if one
looks at the stability of the different estimates with respect to�
(see Figure 2) or starts by locating the areas of interest using the
standard beamformer, for instance.

true values mean variance CR bound

��= .3162 .3162 .0222 .0120
��= .3162 .3238 .0221 .0118
��= .3162 .3189 .0018 .0015
 �= 24 23.6144 1.192 .3213
 �= 27 27.3014 1.163 .3513
 �= 45 45.0206 .0906 .0496

Table 2: The means and variances observed over 1000 realizations
for the three sources case.

7. CONCLUSIONS

The general conclusion one can draw from this contribution is that
in estimation problems where the ML function is difficult to op-
timize but simple to evaluate, a quite efficient estimation scheme
can be obtained by simply proposing several crude estimates and
using the ML criterion to retain the best one. This can for instance
be more efficient than (cumbersome) optimal fusion of different
sub-optimal estimates working on different data sets.

The additional information that is brought by the likelihood
function in the selection procedure plays an important role. We are
so far unable to analyse the performance of the procedure. Further
investigations are needed.
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9. APPENDIX: THE SINGLE SOURCE CASE.

There are 3 reals unknowns� = �a, f, v�, we concentrate on the
�	
� distinct estimates of the spatial frequeny� we denote��� in
this appendix. One has��� � ���
� ���� with �
 � �� � and�� �
������� � �����. The basic PHR method applied to an order 2
Toeplitz matrix yields as frequency estimate��� the angle of���.
To ��� we associate the good determination��� close to the true�
(see (4)). The statistical properties of��� thus only depend on those
of ��� obtained by averaging the elements in the�-th diagonal of��

Under the modeling assumptions made in section 2,�� in (2)
is such that� �� is a sample of a complex Wishart distribution with
parameter matrix� and� degrees of freedom. Defining then�� �
����, it follows that [7]:

� !�tr� ��"�tr� ��#� � tr��"�#� (5)

with " and# arbitrary matrices and tr�"� the trace of the matrix
". In what follows we assume that� , the number of snapshots,
is large enough and the modeling errors small enough for a first
order approximmation to be valid. We are thus able to evaluate the
covariance of the estimates��� from those of the complex random
variable���. One has:

��� �
�

� � �
tr� ��$��

where$ is the shift matrix with one’s on the upper-diagonal Using
then (5) with" � $� and# either$� or its transpose, one gets
introducing� � ���:

!� �����
�� �

�

�
��� �

� � ��

� � �
�

and !� ����� �
�����

�
��� �

���
�� � ��� 
�

�� � ���
��
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Figure 2: The standard deviations of the different individual fre-
quency estimates and an histogram of their contibutions to the
unique estimate over 1000 realizations.

From these two relations, one deduces the covariance of the angle
��� of the complex random variable���:

!� ���

�� �
�

������ � ��
�� � ���

����
�� � ��� 
�

� � �
� (6)

the true determination�%� is obtained from��� by division by�
and translation, one has:

!� �%��� �
�

��
!� ���

�� (7)

This value is always greater than the corresponding Cramer Rao
bound [4]:

!� �%�� �
��� ����

� �������� � ��
(8)

In this single source case, this variance is independent of the
direction of arrival and one can seek the value of� that yields the
smallest variance. For an SNR of
dB (� � �) it is attained for
� 	 ��� and equals roughly twice the CR bound. It is however
not a good idea to only evaluate this single estimate�%��� because
the approach we propose further reduces the variance by almost a
factor two to get quite close to the CRB.

To illustrate this observation we present the results we get for a
single source at� � %��� � ��, � � � � �, � � �

 snapshots
and an array having� � �
 sensors. This is of course a trivial
example and we certainly would recommend to use the standard
beamformer to estimate� .

We present in Figure 1. the theoretical (6), (7) and estimated
variances (over the 1000 realizations) of each of the�� individual
estimates of the spatial frequency, and the number of times the
different estimates have been retained in order to obtain the unique
proposed estimate. For all the estimates the bias is negligible.

The standard deviation of the estimate we get with the pro-
posed procedure is���
 �
�� while the minimum of the individ-
ual standard deviations (6), (7) is��� 
 �
�� and the CRB (8) is
��� 
 �
��. From the histogram in Figure 2. one realizes how
realization dependent our estimate is and that indeed all 19 esti-
mates contribute with a selection rate that is somehow inversely
proportional to their standard deviation.
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