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ABSTRACT we propose. In section 5 we explain why its statistical properties
In this work we present a new direction of arrival (DOA) esti- are hard to assess. Finally simulations are presented in section 6

mation scheme that applies to uniform linear arrays. We propose toand in the Appendix.
get several estimat'es by applying the Eisarenko harmonic retrieval 2> SIGNAL MODEL
(PHR) method to different sets of covariances and to select the best ) ) ] ] )
estimate by using the maximum likelihood (ML) criterion. More We consider a linear array witlv' equispaced sensors with spac-
generally we would like to promote the idea that it is often more ing half a wave-length. It receives signals frdnfar field narrow-
efficient to select the best among several estimates rather than t®#and uncorrelated sources in additive white noise. We dekipte
combine them. This requires of course the existence of a decisionthe complex ordefy” output-vector (snapshot) of the array. These

criterion which indeed conveys additional information. vectors are modeled as independent, identically distributed com-
plex gaussian variables with zero mean and covariance matrix:
1. INTRODUCTION P
R=7)_ aydd(f,)d0(f,)" + vl &

In estimation problems, the maximum likelihood (ML) method is
generally taken as the reference since it leads to efficient estima- . P= . . . .

tors that attain asymptotically the Cramer-Rao bound (CRB). In Wher?“ is the power Of the additive white _nmséﬁ(_fp) is the
direction of arrival (DOA) estimation it has only had limited suc- St€€ring Vvector at spatial frequengy associated with the p-th
cess since the optimization of the likelihood function is computa- source whose power is denotesl We define the signal to noise

tionally complex. For difficult scenarios, it is an ill-conditionned "atio (SNR) of source asp, = a;,/v. The spatial frequency

function with numerous local extrema. This means that an excel-f .is relate_lqhto the pearin@ with respel(;t to broz_idshide by :_
lent initial point has to be known in order to draw the benefits from (sin ¢)/2. The steering vector at spatial frequenfcis thendt(f) =

. . 1 1 i
the ML method and the major problem is actually to find a good [€XP(2imnf)]with0 < n < N—1and—3 < f < 3. The covari-
initial point. ance matrixR has thus a Toeplitz structure and is entirely defined

We consider the standard situation of a linear array wth by its first column. Since we assunffthe number of sources to be
equispaced sensors receiviRgharrow-band uncorrelated sources known, there aréP + 1 unknowns:d = { (ap, fp)p=1....P; v}.

in spatially white noise. We assunfeto be known. An estimateR of R is given by:
The basic Pisarenko harmonic retrieval (PHR) method uses a L1 & .
minimal set of covariances that has the same number of degrees R== > XX (2
k=1

of freedom as the unknown parameter set. It achieves a change of ) )

variables and transforms a set of estimated covariances into an esvhereT’ is the number of snapshots. Under the modeling assump-
timate (i.e. a set of parameter estimates). There is no optimizationtions made abovel in (2) is a sample from a complex Wishart
involved in this transformation that is one to one. We apply a simi- distribution with mean’z andT" degrees of freedom. Maximizing

lar method to several minimal sets of covariances to obtain severalhe likelihood of the observations amounts then to minimize [4] :
estimates of the unknown parameters. We then evaluate the ML €(6) = log |R(8)| + tr((RR(6) ") (3)
criterion at each of these estimates to selectiisei.e. the most  ith respect to the unknowns i where|R| denotes the deter-
likely. The resulting estimate is in general quite efficient and its minant of the matrixz and t(R) its trace. This is a difficult task

variance close to the Cramer Rao bounds. since this function is highly non-linear in the unknowns.
While in this DOA estimation context, we propose to get a set
of competing estimates by applying the PHR to several minimal 3. DEVELOPMENT

sets of covariances other estimz_ites can be proposed and testeg.; Getting several estimates

The method of moments can quite generally be used to generate

several potential estimates. While optimally combining them is The method of moments [9] consists in replacing the full informa-

then an alternative to the approach we propose, itis generally moretion, hereR, by a smaller dimensional statistic that still conveys

cumbersome to get the optimal weights and the resulting estimateenough information on the unknownsfirand to base the estimate

might well be less efficient. The idea is not really new and has on this insufficient statistic. Quite often one uses as statistic a set

been promoted in [1] for the case of real sinusoids in noise. Similar of moments hence the name of the method. As the number of ob-

developments have also been proposed in e.g. [2], [3]. servations increases, these moments converge in some sense to the
This paper is organized as follows. The signal model is de- true moments that are a function of the unknowWn3he estimate

scribed in section 2. In section 3 and 4 we develop the procedured is then obtained by model-fitting or inversion of this function.
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In the DOA estmation case, a first possibility is to consider the e e e e e e e e e

set of P+1 covariances denot®d = {ro, r1,..,7p} extracted Bl cee e e e ee i ee s ee s eee
from the first column of the Toeplitz matriR. The setY; has o o o . . . .
2P+1 real degrees of freedom and its expression as a function of G- e - ee e e e ee e
0 is easily deduced from (1). Caratheodory’s theorem [5] estab- o .. se oo oo
lishes that the transformation froiri to 6 is generically one to N S L S .

one. The procedure that performs this inversion is known as the
basic Pisarenko Harmonic Retrieval (PHR) method [6]. diethe
the estimate of obtained by applying the PHR method}p an : - :

estimate of;. This estimate is consistent asymptoticallyZirbut -05 0 0.5
is known to have poor efficiency.

Many other sets of covariances can be used similarl tw Figure 1: The frequency determinations for downsampling rates
yield possibly more efficient estimates. We seek those for which k=1to 9. The 2 central frequencies remain stable while the others
the inverse transformation is easy to implement. move around.

Let us consider the sels, = {ro, 7%, T2k,..,7Pr}. FOr
k=1 we get the set considered above andior 1 it is the set value ofk, itis easy to build a scenario for which 2 or more sources
of P+1 covariances obtained by downsampling the covariance secollapse into a single one i}, making the corresponding estimate
quence by a factok. Though these sets have precisely the right yseless.
number of degrees of freedom, the transformation figyrto 6 We therefore propose to select the sinigést estimate by us-
is one to many. This is a result of the ambiguity introduced by ing again the ML criterion (3). Once all the estimatigsare avail-
downsampling. The covariance sequencijifieads to an aliased = 5pje e compare their likelihood$d,,) and keep the most likely,
spectrum and each spatial frequency in the aliased spectrum haﬁ/e denotd.. The estimate that is retained in this way is realisa-
genericallyk potential determinations. More precisely a frequency tion depenc;ént and if one performs a large number of simulations

F €] — 1, 1] of the aliased spectrum can be induced by any of _ ~ . _ . X
€] ) b y any all 8;’s will contribute more or less frequently, see Figure 2. This

27 2
i L — 1 11w initi ~

the k frequenmes% +5 €l = 3, 3] with £ € Z of the initial actually allows. to be more efficient than any of the individual

ék’s.

spectrum. There are thus generical§y distinct P-sources sce-
narios that yield the samg, and it remains to find the good de-
termination. We propose to use the ML _criterion 3 to select the 4. DESCRIPTION OF THE ALGORITHM

good determination. This may be quite time consuming and there ] ) ) ) )

are several means to drastically reduce this burden. One can us&iven the signal model and the notations defined in section 2 we
the output of the standard beamformer to locate the frequency do-Propose a procedure that allows to estimate the 2P+1 unknowns in
main(s) of interest and only evaluate the ML criterion for determi- ¢ using as observations the estimated covariance mat(®.

nations falling in these areas. Another mean to solve the ambiguity =~ We first concentrate the information by toepleriziRgo get
consists in using simultaneously the estimates given by different 2. In the analysis and simulations below, we do so by averag-
Y%:'s to localize the frequencies that are stable over several k's. Ining the diagonals. All the information is now conveyed by fie

the two sources scenario described in section 6 the plot of the escovarianceg, } present in the first column @R

timates obtained from 9 differedf,’s is shown in Figure 1. Only We buildk,,... different subsets of covariances:

the 2 central frequencies arourfd = 0 and fo = .0167 remain N o ) N1

stable while the others move in an orderly fashion Yi = (Po, Py Fors s Prk)y 1 <k < kmae = floor(552)
One can also observe in this figure that for a fixethe dis- from which we deducé... different estimates,.. To do so we

tancel /k between 2 determinations is much larger than the reso-
lution which is typically%. Since the resolution is linked to the
size of the domain of attraction of the ML function, this means
that for each frequency, at most one of thé& determinations is
within the domain of attraction of the global minimum of the ML
function and there is thus no risk of confusion. We will never end
up with the wrong determination if we use the ML criterion (3) to

construct the functiofy} () that related to Y. and apply its in-
verse taY;, to getdy,.

For k=1, the inverse is unique [5] and the inversion is per-
formed by applying the PHR method [6]. It consists in the follow-
ing steps:

e built the covariance matrix with Toeplitz structure of order

select it. P+1 associated with
¢ ¢ the estimate of is its smallest eigenvalue
3.2. Gettingasingle’best’ estimate e compute itsmallest eigenvector, sajuo u1 ...up]
For an N-sensor array, there atg.. = floor(¥=1) different e the P roots ofi, +u12 + ... + upz” = 0 are then distinct

minimal covariance sef§, and thusk.... distinct estimates. To  and on the unit circle, rewritte them a¥™/» with — 3 < fo < :
come up with an unique one having better efficiency one can eitherthe estimates of,
combine them or select th®st among them. ¢ obtain the estimates, by solving a the set of linear equa-
Finding the optimal way to combine thg’s requires the knowl-  tions deduced frory, (8) with f, in place off,.
edge of the cross-correlation matrix between the estimates which ~ For k>1, the inverse transformation is one to many. We first
is in general cumbersome to evaluate. This approach seems feasiapply the PHR method described abové’io Let F},, p € (1, P)
ble only in the single source case. be the frequency estimates. To edGhone associates potential
On the other hand, except in the single source case (see th@eterminations:
Appendix), the singleﬁ,C that is the most efficient depends upon R
the scenario and is thus unknown beforehand. Indeed for any fixed () =

|5

., leZ>-5<f()<5 (4
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o built £* distinct estimate8 by supplementing the frequency 7 = 100 and N = 20 and a spatial frequency separation of

estimates: one among thedeterminationsf, (¢) for p € (1, P) of = 1/(4N)_ i.e. one fourth of the standard resolution. We built
with the amplitudes estimates. kmaz= 8 estimates and the algorithm separates the two sources

« evaluate the ML criterion with(é) in place ofR in (3) and with a frequency estimate varian_ce slightly higher than t\/\_/ice_ the

. - P CRB. The results are presented in Table 1. for 1000 realizations.
retain the most I'kelﬁ_k among thek:™. ) . ) Since the standard deviations of the estimates are about a fourth of

Once thék..... estimates), are available retain againthe most  the source separation the results are meaningful. Few estimation
likely, the one that optimizes (3) to get the estiméate

procedures would be able to separate these sources.
We gave in section 3.1 some hints that allow to reduce the
number of evaluations to be performed fréf to just a few.

[ true values| mean | variance | CR bound]

We shall see from the simulations below thatis quite effi-

. . . a1=1 1.009 134 .092
cient and its variance close to the Cramer Rao bounds. One caf ;=7 993 138 092
nevertheless usk as an initial point of an iterative optimization =0 200051 9.0010-° | 3.7210-°
routine of the likelihood (3) sincé. is in general consistent, the f,=.0125 | .0131 | 8.8810 ° | 3.7210 °

estimate should converge to the global optimum of the likelihood

function. Table 1: The means and variances observed over 1000 independent

realizations for the two sources separation case.
5. STATISTICAL ANALYSIS ) )

We now consider an example taken from [8]. It consists of
A statistical analysis is indeed extremely difficult because the in- 3 equipowered sources with an SNR=-5dB which are located at
dex of the estimaté, that is retained is realization-dependent. The Pearings equal to (24, 27, 45) degrees with respect to broadside,
fact that the different estimates are correlated further complicates! = 100 and N = 15. The separation of the two close sources
the analysis. This is probably the price to pay for the simplicity iS one third of the standard resolution. The results are presented
of the fusion procedure. As in the much more cumbersome op- in Table 2. for 1000 independent realizations. The variance on
timal weighting schemes the efficiency is better than those of the the bearings is again 2 to 3 times the CRB. There are 4 potential

individual estimates and can be quite close to the CR bounds.
Even in the usually trivial single source case a complete sta-
tistical analysis seems out of reach. We indicate in the Appendix
how to compute the variances of thg ... individual estimates of
the unique spatial frequengfytaking into account the “toepleriza-
tion” of R and assuming the ML criterion systematically selects
the good determination (7) which is legitimate in this case. We

Y:’s but the estimates given ki is never retained, those &%
quite seldom and those af andY respectively about one and
two thirds of the realization.

In both cases the computational complexity is quite low if one
looks at the stability of the different estimates with respeck to
(see Figure 2) or starts by locating the areas of interest using the
standard beamformer, for instance.

also detail simulation results to highlight how realization depen-

dent our estimate is even in the single source case, see Figure 2

true values| mean | variance| CR bound]

While the variance say. of each of thé:,,,.. individual estimates

is quite easy to obtain as well as the correlations between them, i

is probably impossible to evaluate the variance of the final estimate|

fe

As afirst step towards an approximate analysis one could prob-

ably say tha!f* is the result of the following model:

a;= 3162 | 3162 | .0222 0120
ax= 3162 | 3238 | .0221 0118
as= 3162 | 3189 | .0018 0015
o1=24 | 23.6144| 1.192 3213
=27 | 27.3014| 1.163 3513
©s=45 | 450206| .0906 10496

e draw a gaussian random variable with mean the true value
and variancé/..,., the CRB

e draw k.., gaussian random variables with mean the true
value and variance the theoretical variantg®f the estimates

o keep among these,, ., values the one that is closest to the
CR sample.

Even if it were possible to get a rough estimate of the variance

Table 2: The means and variances observed over 1000 realizations
for the three sources case.

7. CONCLUSIONS

The general conclusion one can draw from this contribution is that

of the so-obtained random variable this analysis takes into accountn estimation problems where the ML function is difficult to op-

neither the correlation between thg .. individual estimates nor
their correlations with the first variable, the minimum of the cur-
rent likelihood function which plays a decisive role.

timize but simple to evaluate, a quite efficient estimation scheme
can be obtained by simply proposing several crude estimates and
using the ML criterion to retain the best one. This can for instance

Since even in the single source case an analysis seems out dpe more efficient than (cumbersome) optimal fusion of different
reach, let us resort to simulations to assess the potentialities of thesub-optimal estimates working on different data sets.

approach in more realistic situations.

6. SSMULATION RESULTS

The single source case is detailed in the Appendix. To test the

The additional information that is brought by the likelihood
function in the selection procedure plays an important role. We are
so far unable to analyse the performance of the procedure. Further
investigations are needed.
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From these two relations, one deduces the covariance of the angle
Q. of the complex random variabfg :

1 2pmax(N — 2k, 0)
(1+2p N %

E(5)

= oo (6)
9. APPENDIX: THE SINGLE SOURCE CASE. 2Tp*(N — k) )

the true determinatiot;, is obtained frorrfl,C by division by &k

There are 3 reals unknowrs= {a, f, v}, we concentrate on the )
and translation, one has:

kmaz distinct estimates of the spatial frequefiyve denotef,C in

this appendix. One has, = {fo, 71} Withr, = a + v andry, = N G

ae?®™f = e, The basi;{: PHR;tnethod applied to an order 2 B(&) = k_‘—’E( k) )
Toeplitz matrix yields as frequency estimdtg the angle off.. This value is always greater than the corresponding Cramer Rao
To F}, we associate the good determinatifinclose to the trugf bound [4]:

(see (4)). The statistical propertiesfafthus only depend on thpse B( a)2) > 6(1 4+ Np) ®)

of 7, obtained by averaging the elements in khth diagonal ofR ~ T(Np)2(N2 -1)

Under the modeling assumptions made in sectiof #) (2) In this single source case, this variance is independent of the
is such thafl R is a sample of a complex Wishart distribution with ~ direction of arrival and one can seek the value: dhat yields the
parameter matri®® andT degrees of freedom. Defining th&h= smallest variance. For an SNR @B (p = 1) it is attained for
R — R, it follows that [7]: k ~ N/2 and equals roughly twice the CR bound. It is however

~ ~ not a good idea to only evaluate this single estindatg, because
T E[tr(RA)tr(RB) = tr(RARB) (5) the approach we propose further reduces the variance by almost a
factor two to get quite close to the CRB.
with A and B arbitrary matrices and(f) the trace of the matrix To illustrate this observation we present the results we get for a

A. In what follows we assume thdt, the number of snapshots, single source af = w/2r = .1,a =v =1,T = 100 snapshots

is large enough and the modeling errors small enough for a firstand an array havingy = 20 sensors. This is of course a trivial

order approximmation to bAe valid. We are thus able to evaluate theexample and we certainly would recommend to use the standard

covariance of the estimaté$ from those of the complex random  beamformer to estimatg.

variabler,. One has: We present in Figure 1. the theoretical (6), (7) and estimated

. 1 . variances (over the 1000 realizations) of each oflthéndividual

Tk = N Z ktr(RS ) estimates of the spatial frequency, and the number of times the
different estimates have been retained in order to obtain the unique

whereS is the shift matrix with one’s on the upper-diagonal Using proposed estimate. For all the estimates the bias is negligible.

then (5) withA = S* and B eitherS* or its transpose, one gets The standard deviation of the estimate we get with the pro-
introducingp = a/v: posed procedure ig7 x 10~2 while the minimum of the individ-
ual standard deviations (6), (7) 81 x 102 and the CRB (8) is
E( |7:k|2) _ l( 24 1+ 2P) 45 X 1_0’3. From the histogrf'am in .Figure 2. one realizes how_
T N—k realization dependent our estimate is and that indeed all 19 esti-
and oy ¥R amax(N — 2k, 0) mates contribute with a selection rate that is somehow inversely
B(7y) = ——(p WP) proportional to their standard deviation.
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