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ABSTRACT This paper is organized as follows. Section 2 presents a
This paper proposes a novel wideband structure for arraygeneral model to represent wideband signals and describes
signal processing. The method lends itself well to a Bayesiarthe derivation of the necessary probability distributions. Sim-
approach for jointly estimating the model order (number of ulation results are shown in Section 3 and the Conclusions
sources) and the DOAs through a reversible jump Markov are in Section 4.
chain Monte Carlo (MCMC) procedure. The source ampli-
tudes are estimated througlmaximum a posteno@MAP) N 2 THE DATA MODEL
procedure. Advantages of the proposed method include joint

detection of model order and estimation of the DOA pa- 1 signal model we consider consists of a set of data vector

rameters, and the fact that meaningful results can be ob-y(n) € RM which represents the data received by a linear

tained using fewer observations than previous methods. Thearray of M sensors at thath snapshot. The data vector

DOA estimation performance of the proposed method is s composed ofc incident wideband plane wave signals,
compared with the theoretical CrérRao lower bound (CRLB)eaCh of which impinges on the array of sensors at an angle

for this problem. Simulation results demonstrate the effec- O,k = 0,1, ..., K —1,and is bandlimited tof| € [£L, f¥]

tiveness and robustness of the method. wheref¥ = I + Afy, f. andf¥ are the lower and upper

frequencies, and f;, is the bandwidth of théth source.
1. INTRODUCTION It is readily verified that the inter-sensor delay of

_ _ _ _ _ sourcek, is bounded by | < Qf%, wherer;, £ £ sin 6y,
Array signal processing, which has found in use in radar, A is the interspacing of the senksors afids the speed of
sonar, communications, geophysical exploration, aStrOphyS'propagation. Denoting the maximun; allowable inter-senor
ical exploration, biomedical signal processing, and acous—delay byT, we have
tics [1], has to do with 1) detection the number of inci- ma
dent sources, 2) estimation of parameters, like direction- 1
of-arrival (DOA) or time-of-arrival (TOA) of the sources Tnaz = kzomir}{ﬂ {qu}
impinging onto the array, and 3) recovery of the incident k
source waveforms. Methods for each of the above objec-The received vector at theth snapshot can then be written
tives can be classified as either narrowband or wideband.as [6]
For the narrowband scenario, there exist many algorithms

(1)

to solve this detection and estimation problem [1] [2] [3] K-1

[4] [5]. Methods such as [3] [4] [5] can perform the deter- ~ Y(n) = > si(t —7) + opw(n), n=1,..,N (2)
mination of model order and the estimation of desired signal k=0

parameters jointly. However, for the wideband scenario, no K1

existing methods can attain the objective of joint detection ~ ) H(m)sk(n) +oww(n), 3
and estimation simultaneously due to the difficult nature of k=0

the problem.

wheré N is the number of snapshots,n) is aniid Gaus-
sian variable with zero mean and unit varianeg, is the
noise variance in the observatioH () € RM™*L is an

As an extension of the method of [3], in this paper, we
propose a novelidebandmodel structure which applies
equally well to both the narrowband and wideband cases,
that detects model order, estimates DOA, and recovers the 1\ote that for notational convenience, from this point onwards we re-
source waveforms. place the approximation with an equality.
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interpolation matrix? and is defined as [6] w(n) areiid, and that all the parameters describing the re-
ceived signal are stationary throughout the entire observa-
tion interval. In the case of a uniform linear array bf
sensors, we may define a set@fsnapshots from (10) as

Z = [z(1),...,z(IN)]. Hence the desired posterior distri-
whereE;; € RM>*M js anexchange matrii.e., all zeros bution of the parameters is given as

except for ones along the anti-diagonal) andt), the kth
signal, ands;(n), the corresponding discrete—time version,

(4)

IZI( ) H(Tk), lf 9k S Tl'/2
TE) = ,
F EvH(r), if 6> 7/2

m(a, T a? k| Z) xp(Zla,T o2 k)p(a|k7‘r,620120)

y Yaws y Yawo

are defined respectively as x p(T|k)p(a?)p(k), (12)
sp(t —13) = [sk(t), se(t — 73), ..., si(t — (M —1)7,)]*,  wherea = [a(1),...,a(N)], andk represents an estimate
(5) of the true number of sourcek,. Assuming that the obser-

vations araid, the total likelihood function is
sk(n) = [sk(n),sk(n—1),... . s6(n— L+ 1)]".

(6)

The matrix H (7;;) interpolates thekth discrete—time se-
quences(n) to give the desired sequeneg(t —mr), m =
0,...,M — 1. We now re—order (3) into a more convenient
form as follows. We definéd;(t) € RM*K as

N
HZla, 7,02, k) = [[N (ﬂo(T)a(n),aﬁ)I) )
n=1

To complete the model, prior distributions of the parameters
are required. The amplitudes are chosénvith covariance
matrix corresponding to th@aximum entropyprior as fol-

I:II(T): ﬁl(TO)?’NLl(Tl)w-~,’~ll(TK_1) 7 @) lows [3]

N
h 2 2\ _ 2 2 ~ T ~ —1
whereh,(7;;) is thelth column in the interpolation matrix plalk,7,6%07) = ] N(O,J ol [HO (T>HO(T)} ),
H (1), and a signal vectai(n) € RX*! as it

(13)
N T
a(n) = [so(n), s1(n),..., sk ()] wheres? is a hyperparameter equal to the signal-to-noise
Then, (3) can be expressed as ratio. The prior distribution of is chosen to be uniform:
L—1 ~ p(7'|k) =U [*Tmam; Tmam]k . (14)
y(n) = ) Hi(r)a(n —1) +o,w(n), (8)

The prior for the parameter? is chosen as the inverse-
Gamma distribution, which is the conjugate prior correspond-
where the signal vectai(n) for { = 1,...,L — 1 can be ing to a Gaussian likelihood function. It is defined as
considered known since it consists only of past values of Yo Yo

the sourcessy(n) for k = 0,..., K — 1. Accordingly, we p(os) =16 (5, 5) : (15)
define a vectoe(n) as

Finally, the prior distribution ork is chosen to be Poisson
with expected number of sourcasas follows

l

Il
o

L—1
z(n) £ y(n) — Z H(T)a(n —1), 9
=1

Ak
p(k) = 7 exp (—A). (16)
and hence we may rewrite (8) in the following form: i
~ In this problem, the only quantities of interest arand
z(n) = Ho(T)a(n) + o,w(n), (10) &, and the othersg ando?, can be treated as nuisance pa-

rameters which are integrated out analytically. The resulting

which represents the desired form of the model. This model yesired posterior distribution can then be expressed as [3][6]
can accommodate either narrowband or wideband sources,

without change of structure or parameters [6]. Furthermore, 1 A Fexp (A
all quantities in (10), including the data, are pure real, which ~ ™\7> & (11 02)N/2\ 2T, 00 %l

leads to significant savings in computations and in hard- N _(Mivo)

ware. ('yo + tr (PHO(T)RZZ» ,oan
The posterior distribution (-| Z) of the parameters given

the data is now developed. We assume the noise vector§yhere R, — EN—1 z(n)z" (n), the sample covariance

2For example, in the case of the uniform linear array, the interpolation matrix _sz(”)- The(1_-, k) are estimated from this diStI’ibg-
matrix can be computed using a windowsidd(-) function. tion using the reversible jump MCMC procedure [7], which
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has been discussed in the narrowband context in [3] and [8]. ¢
It is discussed in further detail in the wideband context in
[6]. The reversible jump MCMC procedure is an exten-
sion of the Metropolis Hastings MCMC algorithm [9][10],
and uses proposal distributions corresponding to different
dimensions to yield an approximation to the joint posterior
distribution of the model order and the parameters. Once
thek,  are estimated, the amplitude vectgin) can be es-
timated forn = 1, ..., N according to the method in [6]. il

@ >
T T

Instantaneous estimate p(k| Y)
=
-

3. SIMULATION RESULTS

L L L L L L L L L
20 40 60 80 100 120 140 160 180 200
Iteration

The proposed algorithm is now applied to a wideband scene-

rio to demonstrate the capabilities of joint detection and es- Fig. 1. Instantaneous estimate ofk|Y), for the first 200
timation of (7, k) and the source amplitudag(n). In this iterations of the chain.

experiment, the model ordérand the delay parameters

are kept constant throughout the entire observation period, PRI

and the hyper-parametetg andv, are set to zero, corre- Wﬁ, SR e O Bl O
sponding to a non—informative prior.

05

Parameter] Value i o
L 8
o2 0.0169
F, (Hz) 1,000
6 (deg) | [—3.44,3.44]
T (sec)| [~7.5,7.5] x 10~°

L L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Table 3.1 Parameters for the experiments.

Fig. 2. Instantaneous estimate of the delayfor the two

According to the parameters in Table 3.1, we generatesources after burn—in: the solid lines are the estimates and
K = 2 sources which are Gaussian processes, each wittthe dashed lines are the true values
zero mean and variance equaldtaer?, and bandlimited to
f € [100,400] Hz (60% relative bandwidth). The incident
anglesd are separated by an angle less than a half standar
beamwidth [1] at the lowest frequency of interest. An array
of M = 8 sensors is used to generadte = 50 snapshots
using (8), with anrSN R = 14dB. The corresponding hyper-
parametes? = 25.12 is assumed known and constant.

-5dB to 18dB. As shown in Fig. 4, the variances of the es-
imates from these trials approach the CRLB closely. The
algorithm starts to break down for SNR levels lower than
-2dB for this set of parameters. The reasons why the vari-
ances do not come closer to the theoretical CRLB are [6]:
1) interpolation errors when a non-ideal interpolation func-

The proposed algorithm randomly initializes all unknown .7 . . S
arameters. As shown in Fig. 1. the alqorithm takes abouttlon is used and 2) the suboptimal procedure for estimating
P X 9 - 9 the source amplitudes. Further simulation results show [6]

25 iterations to converge to the correct order and about 2,00Q, . probability of an error in detection of the model or-

iterations for a burn-in b(_aforg the chain centres on th_e trueder tends to diminish toward zero with increasing number
delay values, as shown in Fig. 2. Table 3.2 summarizes a5t sna shots, for SNR values above threshold
comparison between the true and estimated values Big. P ' '

3 shows that the signal amplitudes are well separated and re-

stored by the proposed MCMC method. The mean-squared 4., CONCLUSION
errors of the restored signals relative to the true signal am-
plitudes are -16.19dB and -15.97dB, respectively. A novel structure for wideband array signal processing is

The variances of the estimatedare plotted in Fig. 4  proposed. A Bayesian approach is used, where a poste-
along with the respective theoretical CRLBs [11]. The al- rior density function which has the nuisance parameters in-
gorithm is applied to 100 independent trials using the pa- tegrated out is formulated. The desired model order and
rameter values listed in Table 3.1, over a range of SNR from DOA estimation parameters are determined through a re-
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4. Mean squared error of, and the corresponding

Fig. 3. A comparison between the true and the restored am-CRLB, versus SNR.

plitudes using the proposed MCMC method for one real-
ization: solid lines correspond the restored amplitudes us-
ing MCMC and the dashed lines correspond the true ampli- [5]
tudes.

Parameten  True Estimated Relative
Difference (%) (6]
T | =7.5e7® —7.95¢7° 6.00
m 7.5e75 7.25¢75 3.36

Table 3.2 Comparison between the true and estimated pa-
rameters.

(7]

versible jump MCMC procedure, and the source amplitudes
can also be recovered. Simulation results support the effec- [8]
tiveness of the method, and demonstrate reliable detection

of the number of sources and estimation of TOAs in white
noise environment with a single linear array.
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