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ABSTRACT
This paper proposes a novel wideband structure for array
signal processing. The method lends itself well to a Bayesian
approach for jointly estimating the model order (number of
sources) and the DOAs through a reversible jump Markov
chain Monte Carlo (MCMC) procedure. The source ampli-
tudes are estimated through amaximum a posteriori(MAP)
procedure. Advantages of the proposed method include joint
detection of model order and estimation of the DOA pa-
rameters, and the fact that meaningful results can be ob-
tained using fewer observations than previous methods. The
DOA estimation performance of the proposed method is
compared with the theoretical Cramér-Rao lower bound (CRLB)
for this problem. Simulation results demonstrate the effec-
tiveness and robustness of the method.

1. INTRODUCTION

Array signal processing, which has found in use in radar,
sonar, communications, geophysical exploration, astrophys-
ical exploration, biomedical signal processing, and acous-
tics [1], has to do with 1) detection the number of inci-
dent sources, 2) estimation of parameters, like direction-
of-arrival (DOA) or time-of-arrival (TOA) of the sources
impinging onto the array, and 3) recovery of the incident
source waveforms. Methods for each of the above objec-
tives can be classified as either narrowband or wideband.
For the narrowband scenario, there exist many algorithms
to solve this detection and estimation problem [1] [2] [3]
[4] [5]. Methods such as [3] [4] [5] can perform the deter-
mination of model order and the estimation of desired signal
parameters jointly. However, for the wideband scenario, no
existing methods can attain the objective of joint detection
and estimation simultaneously due to the difficult nature of
the problem.

As an extension of the method of [3], in this paper, we
propose a novelwidebandmodel structure which applies
equally well to both the narrowband and wideband cases,
that detects model order, estimates DOA, and recovers the
source waveforms.

This paper is organized as follows. Section 2 presents a
general model to represent wideband signals and describes
the derivation of the necessary probability distributions. Sim-
ulation results are shown in Section 3 and the Conclusions
are in Section 4.

2. THE DATA MODEL

The signal model we consider consists of a set of data vector
y(n) ∈ RM , which represents the data received by a linear
array ofM sensors at thenth snapshot. The data vector
is composed ofK incident wideband plane wave signals,
each of which impinges on the array of sensors at an angle
θk, k = 0, 1, ..., K−1, and is bandlimited to|f | ∈ [

f l
k, fu

k

]
,

wherefu
k = f l

k + ∆fk, f l
k andfu

k are the lower and upper
frequencies, and∆fk is the bandwidth of thekth source.

It is readily verified that the inter-sensor delayτk of
sourcek, is bounded by|τk| ≤ 1

2fu
k

, whereτk , ∆
C sin θk,

∆ is the interspacing of the sensors, andC is the speed of
propagation. Denoting the maximum allowable inter-senor
delay byTmax, we have

Tmax = min
k=0,...,K−1

{
1

2fu
k

}
. (1)

The received vector at thenth snapshot can then be written
as [6]

y(n) =
K−1∑

k=0

sk(t− τk) + σww(n), n = 1, ..., N (2)

≈
K−1∑

k=0

H̃(τk)sk(n) + σww(n), (3)

where1 N is the number of snapshots,w(n) is aniid Gaus-
sian variable with zero mean and unit variance,σ2

w is the
noise variance in the observation,̃H(τk) ∈ RM×L is an

1Note that for notational convenience, from this point onwards we re-
place the approximation with an equality.
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interpolation matrix2 and is defined as [6]

H̃(τk) =

{
H(τk), if θk ≤ π/2
EMH(τk), if θk > π/2

, (4)

whereEM ∈ RM×M is anexchange matrix(i.e., all zeros
except for ones along the anti-diagonal) andsk(t), thekth
signal, andsk(n), the corresponding discrete–time version,
are defined respectively as

sk(t− τk) = [sk(t), sk(t− τk), . . . , sk(t− (M − 1)τk)]T ,
(5)

sk(n) = [sk(n), sk(n− 1), . . . , sk(n− L + 1)]T .
(6)

The matrix H(τk) interpolates thekth discrete–time se-
quencesk(n) to give the desired sequencesk(t−mτ),m =
0, . . . ,M − 1. We now re–order (3) into a more convenient
form as follows. We definẽH l(τ ) ∈ RM×K as

H̃ l(τ ) =
[
h̃l(τ0), h̃l(τ1), . . . , h̃l(τK−1)

]
, (7)

whereh̃l(τk) is the lth column in the interpolation matrix
H̃(τk), and a signal vectora(n) ∈ RK×1 as

a(n) , [s0(n), s1(n), . . . , sK−1(n)]T .

Then, (3) can be expressed as

y(n) =
L−1∑

l=0

H̃ l(τ )a(n− l) + σww(n), (8)

where the signal vectora(n) for l = 1, ..., L − 1 can be
considered known since it consists only of past values of
the sources,sk(n) for k = 0, ..., K − 1. Accordingly, we
define a vectorz(n) as

z(n) , y(n)−
L−1∑

l=1

H̃ l(τ )a(n− l), (9)

and hence we may rewrite (8) in the following form:

z(n) = H̃0(τ )a(n) + σww(n), (10)

which represents the desired form of the model. This model
can accommodate either narrowband or wideband sources,
without change of structure or parameters [6]. Furthermore,
all quantities in (10), including the data, are pure real, which
leads to significant savings in computations and in hard-
ware.

The posterior distributionπ(·|Z) of the parameters given
the data is now developed. We assume the noise vectors

2For example, in the case of the uniform linear array, the interpolation
matrix can be computed using a windowedsinc(·) function.

w(n) are iid, and that all the parameters describing the re-
ceived signal are stationary throughout the entire observa-
tion interval. In the case of a uniform linear array ofM
sensors, we may define a set ofN snapshots from (10) as
Z = [z(1), . . . , z(N)]. Hence the desired posterior distri-
bution of the parameters is given as

π(a, τ , σ2
w, k|Z) ∝ p(Z|a, τ , σ2

w, k)p(a|k, τ , δ2σ2
w)

× p(τ |k)p(σ2
w)p(k), (11)

wherea = [a(1), . . . , a(N)], andk represents an estimate
of the true number of sources,K. Assuming that the obser-
vations areiid, the total likelihood function is

`(Z|a, τ , σ2
w, k) =

N∏
n=1

N
(
H̃0(τ )a(n), σ2

wI
)

. (12)

To complete the model, prior distributions of the parameters
are required. The amplitudes are choseniid with covariance
matrix corresponding to themaximum entropyprior as fol-
lows [3]

p(a|k, τ , δ2σ2
w) =

N∏
n=1

N
(

0, δ2σ2
w

[
H̃

T

0 (τ )H̃0(τ )
]−1

)
,

(13)

whereδ2 is a hyperparameter equal to the signal-to-noise
ratio. The prior distribution ofτ is chosen to be uniform:

p(τ |k) = U [−Tmax, Tmax]k . (14)

The prior for the parameterσ2
w is chosen as the inverse-

Gamma distribution, which is the conjugate prior correspond-
ing to a Gaussian likelihood function. It is defined as

p(σ2
w) = IG

(ν0

2
,
γ0

2

)
. (15)

Finally, the prior distribution onk is chosen to be Poisson
with expected number of sourcesΛ as follows

p(k) =
Λk

k!
exp (−Λ) . (16)

In this problem, the only quantities of interest areτ and
k, and the others,a andσ2

w, can be treated as nuisance pa-
rameters which are integrated out analytically. The resulting
desired posterior distribution can then be expressed as [3][6]

π(τ , k|Z) ∝ 1
(1 + δ2)Nk/2

(
Λ

2Tmax

)k exp (−Λ)
k!

(
γ0 + tr

(
P̃
⊥
H0

(τ )R̂zz

))−(MN+ν0
2 )

, (17)

whereR̂zz =
∑N

n=1 z(n)zT (n), the sample covariance
matrix ofz(n). The(τ , k) are estimated from this distribu-
tion using the reversible jump MCMC procedure [7], which
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has been discussed in the narrowband context in [3] and [8].
It is discussed in further detail in the wideband context in
[6]. The reversible jump MCMC procedure is an exten-
sion of the Metropolis Hastings MCMC algorithm [9][10],
and uses proposal distributions corresponding to different
dimensions to yield an approximation to the joint posterior
distribution of the model order and the parameters. Once
thek, τ are estimated, the amplitude vectora(n) can be es-
timated forn = 1, . . . , N according to the method in [6].

3. SIMULATION RESULTS

The proposed algorithm is now applied to a wideband scene-
rio to demonstrate the capabilities of joint detection and es-
timation of(τ , k) and the source amplitudessk(n). In this
experiment, the model orderk and the delay parametersτ
are kept constant throughout the entire observation period,
and the hyper-parametersγ0 andν0 are set to zero, corre-
sponding to a non–informative prior.

Parameter Value
L 8

σ2
w 0.0169

Fs (Hz) 1,000
θ (deg) [−3.44, 3.44]
τ (sec) [−7.5, 7.5]× 10−5

Table 3.1. Parameters for the experiments.

According to the parameters in Table 3.1, we generate
K = 2 sources which are Gaussian processes, each with
zero mean and variance equal toδ2σ2

w, and bandlimited to
f ∈ [100, 400]Hz (60% relative bandwidth). The incident
anglesθ are separated by an angle less than a half standard
beamwidth [1] at the lowest frequency of interest. An array
of M = 8 sensors is used to generateN = 50 snapshots
using (8), with anSNR = 14dB. The corresponding hyper-
parameterδ2 = 25.12 is assumed known and constant.

The proposed algorithm randomly initializes all unknown
parameters. As shown in Fig. 1, the algorithm takes about
25 iterations to converge to the correct order and about 2,000
iterations for a burn-in before the chain centres on the true
delay values, as shown in Fig. 2. Table 3.2 summarizes a
comparison between the true and estimated values ofτ . Fig.
3 shows that the signal amplitudes are well separated and re-
stored by the proposed MCMC method. The mean-squared
errors of the restored signals relative to the true signal am-
plitudes are -16.19dB and -15.97dB, respectively.

The variances of the estimatedτ are plotted in Fig. 4
along with the respective theoretical CRLBs [11]. The al-
gorithm is applied to 100 independent trials using the pa-
rameter values listed in Table 3.1, over a range of SNR from
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Fig. 1. Instantaneous estimate ofp(k|Y ), for the first 200
iterations of the chain.
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Fig. 2. Instantaneous estimate of the delaysτ for the two
sources after burn–in: the solid lines are the estimates and
the dashed lines are the true values

-5dB to 18dB. As shown in Fig. 4, the variances of the es-
timates from these trials approach the CRLB closely. The
algorithm starts to break down for SNR levels lower than
-2dB for this set of parameters. The reasons why the vari-
ances do not come closer to the theoretical CRLB are [6]:
1) interpolation errors when a non-ideal interpolation func-
tion is used and 2) the suboptimal procedure for estimating
the source amplitudes. Further simulation results show [6]
that the probability of an error in detection of the model or-
der tends to diminish toward zero with increasing number
of snapshots,N , for SNR values above threshold.

4. CONCLUSION

A novel structure for wideband array signal processing is
proposed. A Bayesian approach is used, where a poste-
rior density function which has the nuisance parameters in-
tegrated out is formulated. The desired model order and
DOA estimation parameters are determined through a re-
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Fig. 3. A comparison between the true and the restored am-
plitudes using the proposed MCMC method for one real-
ization: solid lines correspond the restored amplitudes us-
ing MCMC and the dashed lines correspond the true ampli-
tudes.

Parameter True Estimated Relative
Difference (%)

τ0 −7.5e−5 −7.95e−5 6.00
τ1 7.5e−5 7.25e−5 3.36

Table 3.2. Comparison between the true and estimated pa-
rameters.

versible jump MCMC procedure, and the source amplitudes
can also be recovered. Simulation results support the effec-
tiveness of the method, and demonstrate reliable detection
of the number of sources and estimation of TOAs in white
noise environment with a single linear array.
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