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ABSTRACT

This paper addresses asymptotically minimum variance
(AMV) algorithm within the class of algorithms based on
second-order statistics for estimating direction of arrival
(DOA) parameters of possibly spatially correlated (even
coherent) narrowband non-circular sources impinging on
arbitrary array structures. To reduce the computational
complexity due to the nonlinear minimization required by
the matching approach, the covariance matching estimation
techniques (COMET) is included in the algorithm. A nu-
merical example illustrates the performance of the AMV al-
gorithm.

1. INTRODUCTION

There is considerable literature about second-order
statistics-based algorithms for estimating DOA of nar-
rowband sources impinging on an array of sensors. The
interest in these algorithms stems from a large number of
applications including mobile communications systems
[1]. In this application, after frequency down-shifting the
sensor signals to baseband, the in-phase and quadrature
components are paired to obtain complex signals. And
complex non-circular signals, for example, binary phase
shift keying (BPSK) modulated signals are often used.
However, only a few contributions, such as [2],[3] have
been devoted to non-circular signals.

The DOA second-order algorithms devoted to complex
circular signals rely on the positive definite Hermitian co-
variance matrix

���������	���

, and naturally they can be used in

the context of non-circular signals. Because, the second-
order statistical characteristics are also contained in the
complex symmetric covariance matrix

����� � �
�� 

for non-

circular signals, a potentially performance improvement
ought to be obtained if these two covariance matrices are
used. In the context of spatially uncorrelated amplitude
modulated or BPSK modulated sources impinging on a lin-
ear uniform array, a significant performance improvement
has been already observed by simulations in [2] and [3]
thanks to a MUSIC-like algorithm and a root-MUSIC like
algorithm respectively.

To improve the performance of these algorithms and to
extend DOA estimation to spatially correlated or even co-
herent arbitrary non-circular sources and to arbitrary array
structures, we propose to consider asymptotically (in the
number of measurements) minimum variance algorithms in
the class of algorithms based on the two covariance matri-
ces. We extend to complex non-circular processes the re-
sult of Porat and Friedlander [4] devoted to the estimating
of MA and ARMA parameters of real non-Gaussian pro-
cesses from sample high-order statistics. After a general
lower bound is derived for the covariance of the estimated
DOAs, it is shown that a generalized covariance match-
ing algorithm attains this bound. Furthermore, the ideas of
COMET [5] are exploited to lower the dimensional opti-
mization problem.

2. ASYMPTOTIC MINIMUM VARIANCE
SECOND-ORDER ESTIMATOR

We consider a zero-mean strict-sense stationary � -variate
complex, possibly non-circular process

� �
whose struc-

tured covariance matrices � ��� 
 ������ ����� � �	���

and

��� ��� 
 ������ ����� � �
�� 

are parameterized by the real param-

eter
�����! 

. This parameter is supposed identifiable
from

� � ��� 
#" ��� ��� 
$
 . These covariance matrices are clas-
sically estimated by � � � %�'& � ��( % � � � �� and � �� �
%� & � ��( % � � �)�� respectively.

To extend the ideas of Porat and Friedlander [4] con-
cerning asymptotically minimum variance second-order es-
timators, to complex non-circular processes, two condi-
tions must be satisfied. First, the covariance *,+-/. ��� 
 of the

asymptotic distribution of
� � � " �0�� 
 must be regular. Sec-

ond, the involved second-order algorithm considered as a
mapping which associates to

� � � " ���� 
 , the estimate
� �

� � � " � �� 
�1 � � �325476 � � � " � �� 

must be complex differentiable w.r.t.

� � � " �0�� 
 at the point� � ��� 
#" ��� ��� 
8
 . While these two conditions are satisfied
for a second-order based on � � only, none of these two
conditions are satisfied in our situation for the followingrea-
sons. First, because ���� is symmetric, the rank of * +-9. ��� 
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which is the rank of the set of the entries of
� � � " � �� 
 is

not full. Consequently * +- . ��� 
 is singular. Second, because

�0�� is complex non Hermitian, an algorithm considered as
a mapping, is not complex differentiable w.r.t. � �� at point�0� ��� 
 .

To satisfy these two conditions, we must eliminate the
common terms in ���� and add complex conjuguate associ-
ated terms. Below, we consider the equivalent to

� � � " ���� 

statistics � � constituted by � � �#���������� � � � 
 , �� �� �������	 � �0�� 

and �� .�
� �������	 � � .

� 
 , (where 	 ��� 
 denote the operator ob-
tained from ����� ��� 
 by eliminating all supradiagonal ele-
ments of the matrix),� � ������ �� � ��� ���� .�
�

�� �
So � 
 ��� � , where � is a permutation matrix. Con-
sequently, any algorithm differentiable w.r.t.

��� � � 
�"�� � � 
$

becomes differentiable w.r.t. � alone if � � is structured as� � � �� ���� ������ . 


��
, in which case

2 4 6 � � ��� 
"! � �$# � 2 4 6 � � ��� 
 # ! ��%'& " % 
& #)( � �� � 
+* !-, � � � 

� � ! %'.�/ 0& � � !-, � � � 


with % .�/ 0& �#�����% & ! % 
&21 , with 1 is the commutation ma-
trix which transforms ����� ��� 
 into �3��� ��� � 
 for all ��4 �
matrix. And because 2 4 6 � � ��� 
 # � �

for all
�

:

2 4 65� � ��� ! � � 
 # � 2 4 66� � ��� 
7!98 � � !9, � � � 
 #� � ! %'.�/ 0& 8 � � !9, � � � 
 � � ! � �:�
Therefore % .�/ 0& is a left inverse of

8 ������<;�=�>@?"A;B? :% .�/ 0& 8 �DC  " (1)

and this time, the rank of the set of the entries of � � is full
and so, the covariance * & ��� 
 of the asymptotic distribution
of � � is a Hermitian positive definite matrix. Therefore, if8

is a full column matrix, we prove [6] by application of
theorem 2 of [4], extended to the complex case:

Theorem 1 The asymptotic covariance of an estimator of�
given by an arbitrary second-order algorithm is bounded

below by
� 8 � *:E %& ��� 
�8	
 E % :

* ? �F%'.�/ 0& * & ��� 
 � %'.�/ 0& 
 �HG � 8 � * E %& ��� 
�8	
 E % � (2)

Furthermore, we prove [6] that this lowest bound is asymp-
totically tight, i.e., there exists an algorithm alg(.) whose
covariance of the asymptotic distribution of

� � satisfies (2)
with equality. Therefore, theorem 3 of [4] extends to the
complex non-circular case.

Theorem 2 The following nonlinear least mean square al-
gorithm is an AMV second-order algorithm.

� � � 2�I$63JLK@MN � � �'O � ��P 
 # � * E %& �QP 
 � � �'O � �QP 
 # � (3)

In practice, it is difficult to optimize the nonlinear function
(3) where it involves the computation of *RE %& �QP 


. Porat
and Friedlander proved for the real case in [4], that the low-
est bound (2) is also obtained if an arbitrary consistent esti-
mate * &�S � of * & ��P 
 is used in (3). This property extends to
the complex non-circular case and to any Hermitian positive
definite weighting matrix. And we prove [6]:

Theorem 3 The covariance of the asymptotic distribution
of
� � given by an arbitrary nonlinear least square algo-

rithm

� � �32TI$6�JUKVMN � � �WO � ��P 
 # �YX ��P 
 � � �WO � �QP 
 # "
is preserved if the Hermitian positive definite weighting ma-
trix

X �QP 

is replaced by an arbitrary consistent estimateX � that satisfies

X � � X ��� 
Z!9[ � � �WO � ��� 
8
 .
So the minimization (3) can be preferably replaced by the
following

� � � 2�I$6\JLK@MN � � �'O � ��P 
 # � * E %&$S � � � �WO � ��P 
 # � (4)

3. APPLICATION TO ESTIMATION OF DOA

In the following, we will be concerned with the signal model

� � �F]_^ � !a` � " b �dc " �e�2� "�f
where

��� � 
 ��( % S�g�g�ghS � represents the independent identically
distributed � -vectors of observed complex envelope at the
sensor output. ] �i� j % " �e�2� " j6k # is the steering matrix
where each vector jml is parameterized by the scalar param-
eter n l to avoid unnecessary notational complexity. But the
results presented here apply to a general parameterization.^ � � ��o � S % " �2�e� " o � S k 
 � and

` �
model signals transmit-

ted by p sources and additive measurement noise respec-
tively. ^ � and

` �
are multivariate independent, zero-mean,

complex wide-sense stationary.
` �

is assumed Gaussian
complex circular, spatially uncorrelated with

��� ` � ` �� 
 �q"rs C�t , while ^ � is complex circular or not, Gaussian or
not and possibly spatially correlated or even coherent with

�vu ������ ��� ^ � ^ �� 
 and ���u ������ ��� ^ � ^ � � 
 . Consequently this
leads to the covariance matrices of

� �
:

� ��� 
 �F] �vu ] � ! q rs C�t and � � ��� 
 �D] � �u ] � �
� � ��� 
#" ��� ��� 
8
 is generically parametrized by thew � p ! p r ! p � p ! c 
'! c real parameters
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� � ��� % " � r 
 with
� % ������ � n % " �e�2� " n k 
 � and

� r �������$�Q� � � � u # � S � 
�"�� � � � u # � S � 
�" � � � �0�u # � S � 
#"B� � � ���u # � S � 
8
 %�� ��� � � k ,� � �_u # � S � " � � � �0�u # � S � 
#"B� � � ���u # � S � 
$
 � ( % S�g�g�ghS k " q rs 
 � .
For performance analysis, some extra hypotheses

are needed. The rank of �Lu is denoted �p . Clearly�p � p , and strict inequality implies linear depen-
dence among the signal waveforms emanating from, e.g.,
specular multipath or smart jamming in communication
applications. We suppose that the signal waveforms are
linearly issued from �p independent signals

� �o � S l 
 l ( % S�g�g�ghS��k ,
i.e., there exists a full colomn rank matrix 	 such that^ � � 	 �^ � . The fourth-order cumulants of these sources

are denoted by 
 �u�� ������ 
��mJ � �o � S l " �o 
� S l " �o � S l " �o 
� S l 
 ,
 � �u�� ������ 
��6J � �o � S l " �o � S l " �o � S l " �o � S l 
 and 
 � ��u�� ������
��6J � �o � S l " �o 
� S l " �o 
� S l " �o 
� S l 
 .
We note that � ��� 
 is linear with respect to

� r . Conse-
quently there exists a known matrix � ��� % 
 of the unknown
DOA parameters

� % :� ��� 
 � � ��� % 
 � r � (5)

Because, we suppose in this paper that
�

is identifiable from� � ��� 
�" � � ��� 
$
 , � must be identifiable from � ��� 
 , and nec-
essarily � ��� % 
 has column full rank. In these conditions,
the minimization (4) with respect to

� r is immediate if
� r

is not restricted to be real. With a geometric procedure, we
obtain: �� r � � � � ��� % 
 X � ��� % 
 # E % � � ��� % 
 X � � (6)

with
X ������ * E %&�S � . Because� � � cf �� ��( %

� � b9
 with � � b9
 ������ �� � 
��� � �� � � � � � � 
� � � 
��� � 
� 
 �� "

where
�

is the selection matrix that satisfies	 ��� 
 � � ��� � ��� 
 for all � 4 � matrices, � � is the
mean of the

f
independent equidistributed random vari-

ables � � b9
 . Consequently 
���	 � � � 
 � %� 
���	 � � � b9
8
 �
%� ����� � � b9
 O ��� � � b9
8
$
 � � � b9
 O ��� � � b9
$
8
 ��� and * &�S � �
%� & � ��( % (�� � � b9
 O %� & � ��( % � � b9
�� � � � b9
 O %� & � ��( % � � b9
�� � *

is a consistent estimate of * & ��� 
 structured as � � � �� . With
arguments similar to that of COMET [5], we prove [6] that�� r is real-valued. Thus

�� r given by (6) is the real value
that minimizes (4).

� % S � is obtained by subtituting

�� r in
(4): � % S � � 2�I$63J 2� N"!$# � ��P % 
 (7)

with# � ��P % 
 �#���� � �� X � �QP % 
 � � �0��P % 
 X � �QP % 
 # E % � � �QP % 
 X � � .
To evaluate the improvement provided by the use of the
covariance matrix ��� ��� 
 , we first consider AMV second-
order algorithms based on � � only.

4. PERFORMANCE ANALYSIS

4.1. AMV estimator based on � �
We suppose here that

�
is identifiable from � ��� 
 only. In

this case, the asymptotic minimum variance of the estimated
parameters relies on the following standard central limit the-
orem applied to the independent equidistributed complex
non-circular random variables

� 
� � � �
. We prove in [6]:

Theorem 4 % f � ����� � � � 
 O ����� � � ��� 
$
$
 converges in
distribution to the zero-mean complex non-circular Gaus-
sian distribution of covariances * - and * �- � * - 1 , where

* - � � ] 
 � ] 
 * -�& � ] � � ] � 
"! q('s C t*) (8)! q rs C t � ] � u ] � ! ] 
 � 
u ] � � q rs C t
with * -�& � � 
u � �vu ! 1 � �0�u �
� .

u 
 ! + u and

+ u � � 	 
 �
	 
 � & �kl ( % 
 �u�� �-, �k S l �., �k S l 
 �-, � �k S l �., � �k S l 
�� � 	 �/� 	 � 
 .
By application of theorem 1, the covariance of the asymp-
totic distribution of the minimum variance second-order
DOA estimator (7) based on � � only is given by the top leftp 4Wp “DOA corner” of

� 8 � * E %- ��� 
�8	
 E % where * - ��� 

is given by (8). If we note here that

83������ ;10;�? � � 8 % " � #
with

8 % ������ 2 02 ? ! and � given by � � � ��� % 
 � r , the matrix
inversion lemma gives

* ? ! � � 8 � % * E %- 8 % O 8 � % * E %- �435� � * E %- ��6 E %
� � * E %- 8 % 
 E %

� � 8 � % * E %87 r- �:9;=< !?> )+ @ * E %A7 r- 8 % � E % " (9)

where � 9;=< !?> )+ @ denotes the projector onto the ortho-

complement of the colomns of * E %87 r- � .
Because this AMV estimator does not suppose the

sources spatially uncorrelated, its derivative %CBEDGF- satis-
fies the constraint %HBEDGF- � ] 
 � ] 
 �4I thanks to a lemma
proved in [7]. Consequently the contribution of the first
term of * - (8) is canceled in the expression of the covari-
ance * ? � %JBEDGF- * - ��� 
 � %JBEDGF- 
 �

. Therefore, if we
eliminate 1 � �0�u � � . 
u 
�!K+ u from * -�& only, * - in (9)
can be replaced by � 
 ��� 
 � � ��� 
 . And the expression
(9) where * - � � 
 ��� 
 � � ��� 
 extends to non Gaussian
and/or complex non-circular sources, the expression of the
asymptotic covariance given in [5] for Gaussian complex
circular sources.

4.2. AMV estimator based on
� � � " ���� 


The standard central limit theorem of the previous section
extends similarly to the independent equidistributed com-

plex non-circular random variables ( � 
�G� � �� � � � � * . We prove

in [6]:
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Theorem 5 % f � �3��� � � � 
 O �3��� � � ��� 
8
�3��� � ���� 
 O ����� � ��� ��� 
8
�� converges

in distribution to the zero-mean complex non-circular Gaus-

sian distribution of covariances * +- . �
� * - * - S -/.* �- S -/. * -9. �

and * � +- . �
� * - 1 1 * 
- S -/.
* �- S - . 1 * �- . � where * - is given by

(8) and

* - . � � ] � ] 
 * - .& � ] � � ] � 
7! q('s � C t*) ! 1 
! � C t*) ! 1 
 � q rs C t � ] � u ] �! ] � u ] � � q rs C t 
 (10)

* �- . � � ] � ] 
 * �- .& � ] � � ] � 
 (11)

* - S - . � � ] 
 � ] 
 * - & S - .& � ] � � ] � 
 (12)

with

* - .& � � u � � u ! 1 � � u � � u 
"!$+ u
* �- .& � � �u � � �u ! 1 � � �u � � �u 
"!$+ �u

* -�& S -/.& � � .�
u � �_u ! 1 � �_u � � .@
u 
"!�+ � �u
where

+ u is given in theorem 4 and
+ �u and

+ � �u are defined
similarly.

Then the asymptotic behavior of � � and
� � � " �0�� 
 are di-

rectly related by the standard continuity theorem. There-
fore:

% f � � �WO � ��� 
$
��1���� �	��
 * & ��� 
#" * � & ��� 
$

with

* & ��� 
 � �� * - * - S -/. ��� 1 * 
- S -9. ���� * �- S -9. � * -9. �0� � * �-/. ���� * � - S - . 1 � * . �- . ��� � * 
- . ���
��
(13)

and * � & ��� 
 � * & ��� 
 � . The covariance of the asymptotic
distributionof the minimum variance second-order DOA es-
timator (7) based on

� � � " � �� 
 is similarly given by (9)

where here
8 % ������ 2 =2 ? ! , � given by � � � ��� % 
 � r and* - ��� 
 is replaced by * & ��� 
 given in (13):

5. SIMULATIONS

In this section, an example is given to illustrate the ex-
pected benefit due to the non-circular property. This will
give an indication of the information contributed by the sec-
ond covariance matrix. Two sources emit equipowered and
spatially uncorrelated unfiltered BPSK modulated signals,
and the number of data samples is

f �
����� . We consider
a uniform linear array of � ��� sensors separated by a
half-wavelength for which jml�� � c "�� ��� � " �e�2� "�� � > t E % A � � 
 � .

Fig.1 exhibits the theoretical normalized asymptotic vari-
ance � * ? ! # % S % given by the AMV estimator based on � �
only and the AMV estimator based on

� � � " �0�� 
 , versus
the DOA separation for a SNR of 10dB. The AMV estima-
tor based on

� � � " �0�� 
 clearly outperforms the AMV esti-
mator based on � � only, and the difference is particularly
prominent when the sources are very close.
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Fig.1 Theoretical normalized asymptotic variance of ����� � ( � � � !"! ��� � )
given by the AMV estimator based on #�$%� only (1) and the AMV estima-
tor based on #�$&��'	$)(�+* (2), versus the DOA separation.

6. REFERENCES

[1] L.C. Godara, “Application of antenna arrays to mobile
communications, Part II: beamforming and direction of
arrival considerations,” Proceedings of the IEEE, vol.
85, pp. 1193-1245, August 1997.

[2] P. Gounon, C. Adnet and J. Galy, “Angular location for
non-circular signals,” Traitement du Signal, vol. 15, no.
1 pp. 17-23, 1998.
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