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ABSTRACT

Traditional acoustic source localization techniques attempt to de-
termine the current location of an acoustic source from data ob-
tained at an array of sensors during the current time only. Recently,
state-space methods have been proposed that use particle filters to
perform recursive estimation of the current source location using
all previous data. In this paper we present an overview of these
particle filter algorithms, and formulate performance measures for
determining their ability to track a moving source. We present re-
sults of experiments using reverberant data recorded in a real room,
and show that steered beamforming methods have improved per-
formance over GCC-based approaches.

1. INTRODUCTION

The problem of locating and tracking an acoustic source in a
reverberant room occurs in several applications, including auto-
matic camera steering for video-conferencing, discriminating be-
tween individual talkers in multisource environments, and provid-
ing steering information for microphone arrays [1].

Traditional approaches to this problem collect data from sev-
eral microphones and use a frame of data obtained at the current
time to estimate the current source location. These traditional ap-
proaches can be divided into two categories: (i) time-delay esti-
mation (TDE) methods such as the well-known generalized cross-
correlation (GCC) function [2], which estimate location based on
the time delay of arrival of signals at the receivers; and (ii) direct
methods such as steered beamforming. Each method transforms
the received frame of data into a function that exhibits a peak in the
location corresponding to the source. We will refer to this function
as the localization function. The practical disadvantage of these
traditional approaches is that reverberation causes spurious peaks
to occur in the localization function. These spurious peaks may
have greater amplitude than the peak due to the true source, so that
simply choosing the maximum peak to estimate the source loca-
tion may not give accurate results.

A promising approach that overcomes the drawback of tradi-
tional methods is to use a state-space approach based on particle
filtering, as recently described in [3, 4]. The key to these new
techniques is that the peak due to the true source follows a dy-
namical model from frame to frame, whereas there is no tempo-
ral consistency to the spurious peaks. Using a sequential Monte
Carlo approach, particle filters are used to recursively estimate the
probability density of the unknown source location conditioned on
all received data up to and including the current frame. Simula-
tion results based on the image method [5] were used in [3, 4]
to demonstrate the performance of these approaches. While the
image method is useful for initial testing of algorithms, it is only

through experiments using data recorded in real rooms that the true
performance of source localization algorithms can be appreciated.

With that motivation in mind, in this paper we compare the
performance of the particle filter algorithms in [3, 4] using exper-
iments performed in a reverberant room. In the following sec-
tion we formulate the localization problem, and present a general
framework to describe the particle filter approach to this problem.
We then describe several performance measures that are used to
analyze the tracking ability of these algorithms, and present the
performance of these algorithms using experimental data.

2. SOURCE LOCALIZATION

2.1. Problem Formulation

Consider a collection of M sensors positioned in arbitrary posi-
tions and located in a multipath environment. Assuming a single
source, the discrete-time signal received at the mth sensor (where
m = 1, . . . , M ) is:

xm(k) = hm(k) � s(k) + nm(k), (1)

where hm(k) is the impulse response from the source to the mth
sensor, s(k) is the source signal, nm(k) is additive noise (assumed
to be uncorrelated with the source signal and from sensor to sen-
sor), and � denotes convolution. The impulse response from the
source to any sensor can be separated into direct path and multi-
path terms, giving

xm(k) =
1

4π‖�s − �m‖ s(k−τm)+s(k)�gm(k)+nm(k) (2)

where �s = [Xs,Ys,Zs]
T is the source location in Cartesian coor-

dinates, �m is the sensor location, gm(k) is the component of the
impulse response between the source and the mth sensor due to
reverberation only, and ‖ · ‖ denotes the vector 2-norm. The delay
from the source to the mth sensor is τm = c−1‖�s − �m‖, where
c is the speed of wave propagation.

Assume that the data at each sensor are collected over a frame
of L samples, and denote the data at the mth sensor for frame t
as xm(t). Stack the sensor frames to form the L × M matrix
Xt = [x1(t)

T , · · · ,xM (t)T ] which represents the data received
at the array during time frame t. We will refer to Xt as the raw
data. The problem is to estimate the current location of the source
from the raw data.

2.2. State-Space Approach

The source localization problem can be formulated in state-space
form as follows. Let the source state at time t be

αt =
[Xs,Ys,Zs, Ẋs, Ẏs, Żs

]T
, (3)
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where [Xs,Ys,Zs]
T is the true source location in Cartesian coor-

dinates, and [Ẋs, Ẏs, Żs]
T is the source velocity. For a given state

α, we will denote the location vector of the state as �α .
At time t, assume that a measurement yt of the unobserved

state becomes available. This measurement is described by the
state-space equation

yt = S(αt,n1(t)), (4)

where S(·) is an unknown, not necessarily linear, function of the
state αt and a noise term n1(t). Assume also that the state is
a Markov process, which can be modelled by the state transition
relation

αt = T (αt−1,n2(t)), (5)

where T (·) is a known, not necessarily linear, function of the pre-
vious state and a noise term n2(t).

Physically, the measurement yt is obtained through some
transformation of the raw data:

yt(θ) = f(θ,Xt), (6)

where we refer to θ as the localization parameter and f(·) as the
localization function. This model can describe measurements ob-
tained either through a TDE localization method or a direct local-
ization method. One should note that (4) is a state-space equation
that describes the measurements as a function of the unobserved
state, whereas (6) describes how the measurements are physically
obtained from the raw data.

Let y1:t = [y1, . . . ,yt] denote the concatenation of all mea-
surements up to time t. The aim is then to recursively estimate the
conditional probability density p(αt|y1:t); the source location can
be estimated as the mean or mode of this density function. Unfor-
tunately, in practice this posterior filtering density is unavailable.
However, assuming that the posterior density at time t−1 is avail-
able, then the posterior at time t can be found through prediction
and updating as [6]

p(αt|y1:t−1) =

∫
p(αt|αt−1) p(αt−1|y1:t−1) dαt−1 (7a)

p(αt|y1:t) ∝ p(yt|αt) p(αt|y1:t−1), (7b)

where p(αt|y1:t−1) is the prior, p(αt|αt−1) is the state transition
density, and p(yt|αt) is the likelihood (or measurement density).

3. LOCALIZATION USING PARTICLE FILTERING

In general no closed-form solution exists for (7a) and (7b), al-
though these recursions can be approximated through Monte Carlo
simulation of a set of particles (representing samples of the source
state) having associated discrete probability masses. The generic
particle filtering algorithm is described in [7].

Two recently proposed source localization algorithms have
been developed using particle filtering and the state-space ap-
proach. In [3] a TDE localization method based on the GCC was
used, whereas in [4] a direct localization method based on steered
beamforming was used. Both of these algorithms can be described
by the general particle filtering algorithm shown in Fig. 1. This
is a standard particle filtering algorithm, and only steps 2)–4) are
specific to the source localization problem. There are three algo-
rithmic choices to be made: (i) what model to use for the source
dynamics in Step 2); (ii) what localization function to use in Step
3); and (iii) how to calculate the likelihood function in Step 4).

Form an initial set of particles {α(i)
0 , i = 1 : N} and give them

uniform weights w
(i)
0 = 1/N, i = 1 : N . For each new data

frame:

1. Resample the particles from the previous frame {α(i)
t−1} ac-

cording to their weights {w(i)
t−1} to form the resampled set

of particles {α̃(i)
t−1, i = 1 : N}

2. Predict the new set of particles {α(i)
t } by propagating the

resampled set {α̃(i)
t−1} through the source dynamical model

3. Transform the raw data into localization measurements us-
ing the localization function: yt(θ) = f(θ,Xt)

4. Form the likelihood function: p(yt|α) = F (yt, α)

5. Weight the new particles according to the likelihood func-
tion: w

(i)
t = p(yt|α(i)

t ) and normalize so that
∑

i w
(i)
t = 1

6. Compute the current source location estimate �̂s as
the weighted sum of the particle locations E{�t} =∑N

i=1 w
(i)
t �

(i)
α

7. Store the particles and their respective weights
{α(i)

t , w
(i)
t , i = 1 : N}

Fig. 1. Particle filtering algorithm for source localization.

Source Dynamics: several dynamical models can be used to
model the time-varying location of a person moving in a room,
e.g., [8]. One that is reasonably simple but has been shown to work
well in practice is the Langevin model used in [3]. In this model
the source motion in each of the Cartesian coordinates is assumed
to be an independent second-order process. This model was also
used in [4], and we use it in the experiments reported in the sequel.

The Localization Function: there are two classes of possible
localization function, corresponding to the two methods used for
conventional source localization: TDE and direct methods. In [3],
a GCC localization function (TDE method) was used, whereas [4]
used a steered beamformer localization function (direct method).

The Likelihood Function (LF): for a given state α, the LF mea-
sures the likelihood of receiving the data yt. In [3], a Gaussian
LF was used. If K potential locations have been obtained from the
localization function, then the Gaussian LF is formed by assum-
ing that either one of these potential locations is due to the true
source location corrupted by additive Gaussian noise, or none of
the potential locations is due to the true source location. A design
parameter q0 reflects the prior probability that none of the poten-
tial locations is due to the source location. In [4] a pseudo-LF was
used, wherein the localization function was used directly as the ba-
sis of the likelihood. Analogous with the use of q0 in the Gaussian
LF, a lower bound can be included in the pseudo-LF to allow for
the case where no peak in the localization function corresponds to
the true source location.

4. PERFORMANCE MEASURES

To provide a reproducible and algorithm-independent assessment
of the tracking ability of a particle filter applied to the problem
of acoustic source localization, we now formulate three specific
performance parameters.
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Mean Square Error (MSE): for each frame of raw data Xt re-
ceived from the sensors, the particle filter delivers an estimate of
the current source location as �̂s = E{�t}. The square error εt for
time frame t is computed as εt = ‖�s − �̂s‖2. The MSE value then
corresponds to the variable εt averaged over the total number of
frames in the processing of the audio signal.

This parameter gives an indication of how much the source
location estimate deviates from the true source position. A high
MSE value hence always reflects an inaccurate tracking ability.

Mean Standard Deviation (MSTD): for each time frame t,
the standard deviation ςt of the particle set is defined as ςt =

[
∑N

i=1 w
(i)
t ‖�(i)α − �̂s‖2]

1
2 . The MSTD value is the variable ςt av-

eraged over the total number of frames in the audio sample.
This parameter is an accuracy measure of the estimated source

position delivered by the particle filter. A large ςt value means
that the position estimate �̂s results from a widely spread particle
set, indicating a low level of estimation certainty.

Frame Convergence Ratio (FCR): we first define the term con-
vergence as follows. For time frame t, the particle filter is said to
be converging toward the true source position �s if this latter lies
within one standard deviation ςt from the estimated source loca-
tion �̂s. In other words, the particle filter is convergent if the fol-
lowing inequality holds: ‖�s − �̂s‖ � ςt + δ, where the parameter
δ accounts for the inaccuracy of the source position measurements
during the audio recordings. The parameter FCR is defined as the
percentage of frames for which the particle filter has been found to
converge, over the entire audio sample length.

5. EXPERIMENTS

A series of experiments using real audio data has been performed
to determine the performance of two particle filtering methods,
namely the algorithms based on: (i) GCC localization function
used as Gaussian likelihood (GCC-GL, similar to the algorithm
used in [3]); and (ii) steered beamformer localization function used
as pseudo-likelihood (SBF-PL, essentially the algorithm of [4]).
These tests allow for a comparative assessment of the tracking abil-
ity of each method when used in reverberant and noisy conditions.

5.1. Experimental setup

Hardware setup: the recording environment was a typical office
room measuring roughly 2.9m × 3.8m × 2.7m, with various en-
cased or protruding spaces (windows, door, furniture, etc.). The
frequency-averaged reverberation time RT60 was experimentally
measured to be 0.39s. The recording setup made use of a total of 8
microphones positioned at a constant height and organized as one
pair on each wall of the room.

The moving sound source was simulated in the room as a loud-
speaker in upright position and following a predefined path at a
constant height of 1.464m (distance from the floor to the center
of the speaker cone). For practical reasons, the source trajectory
was always a straight line, showing a variety of lengths and orien-
tations. A small source of error (estimated to be less than 10cm)
may have been introduced when monitoring the position of the
speaker for the duration of the recording. The measurement inac-
curacy parameter δ was therefore set to 0.1m.

The audio samples used as source signals were speech
utterances by male speakers taken from the TIMIT database, with

a sample length varying from 3.6s to 7.5s. The sensor signals
were all sampled at 8kHz and band-pass filtered between 300 and
3000Hz prior to particle filter processing.

Software setup: to ensure a fair comparison of the two methods,
the parameters of each algorithm were independently tuned using
a reference audio sample to achieve the best particle filter perfor-
mance. This process was done empirically by simulating each al-
gorithm a number of times with varying parameters until a satis-
factory performance was achieved.

The particle set for each algorithm was initialized by placing
each particle at the start location of the sound source in the room.
This way, the unpredictable effects of a uniform initial particle dis-
tribution were reduced to a negligible level.† In both algorithms,
the incoming sensor signals were split into frames of L = 512
samples (frame length of 64ms) and the processing was carried
out using a frame overlapping factor of 0.5.

5.2. Analysis of experimental results

To illustrate some of the experimental results, we present some
typical plots obtained from algorithm SBF-PL. The first plot in
Fig. 2 shows an example of the function used as pseudo-likelihood
plotted for one signal frame over the entire 2D state-space (note
that for SBF-PL, this likelihood function is to be evaluated only
at the particles’ positions). This plot shows clearly the multi-
hypothesis character of the observation: the true source peak is
located at the (X ,Y)-coordinate position (0.75, 2.3), other peaks
are clutter measurements due to reverberation.

The other two plots in Fig. 2 present the tracking result in
the X and Y coordinates for a 3.8s run of algorithm SBF-PL.
It demonstrates the ability of this method to accurately track the
sound source across the room despite the relatively high level of
reverberation. This kind of result typically yields tracking quality
values of MSE = 0.013m2, MSTD = 0.094m and FCR = 0.95.

5.3. Comparative results

The results presented here have been obtained in the following
manner. Each method under test was run 100 times with each
one of 6 different real audio samples, implying a variety of source
signals and trajectories. Since a different level of performance is
usually achieved for different source signals and paths, the results
obtained for each of the audio samples are given separately. Ta-
ble 1 contains the values obtained for the performance assessment
parameters averaged over the 100 real audio simulations.

5.4. Discussion

In Table 1, the differences in the overall performance results from
one sample to the other reflect a variable degree of tracking diffi-
culty for the algorithms, resulting typically from the quality of the
audio signals and the specific trajectory of the sound source.

It can be seen that for a couple of samples, the performances
of both algorithms are similar. However, as soon as the quality of
the experimental conditions diminishes, the tracking performance
of GCC-GL rapidly deteriorates whereas SBF-PL still manages to
function with a reasonable level of tracking accuracy, as indicated

†We are only interested in the performance of the algorithms in tracking
mode. Initialization considerations are of course important for a functional
system, but we do not examine this in the present paper.
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Fig. 2. Example results from algorithm SBF-PL using real audio data. Left plot: beamformer output function used as pseudo-likelihood,
for one signal frame. Middle and right plots: tracking results with true source trajectory (dotted line), estimated source trajectory (solid
line), and lines representing ± one standard deviation of the particle set from its weighted mean �̂s (grey lines).

SBFPL GCCGL

MSE 0.082 0.026
MSTD 0.212 0.098

FCR 86.1 80.3

MSE 0.022 0.057
MSTD 0.182 0.109

FCR 97.3 67.5

MSE 0.021 0.403
MSTD 0.193 0.116

FCR 97.7 33.9

SBFPL GCCGL

MSE 0.170 0.168
MSTD 0.219 0.111

FCR 74.0 49.4

MSE 0.024 0.282
MSTD 0.174 0.116

FCR 97.8 34.1

MSE 0.171 0.848
MSTD 0.247 0.116

FCR 79.2 19.8

Table 1. Comparative results. Each of the 6 main rows shows the
average performance measures (MSE in m2, MSTD in m, FCR in
%) for a different sample of real audio data.

by the MSE and FCR parameters.‡ This behavior is confirmed
when investigating the 2D likelihood function frame-after-frame
for each algorithm. The GCC-based likelihood shows a distinc-
tively lower level of robustness against spurious peaks. Also, the
presence of the true source peak in this likelihood function is usu-
ally more emphasized with the SBF method.

The MSTD values shown in Table 1 are more or less constant
for both algorithms, which reflects the fact that this value is mainly
a result of the specific parameter setting chosen for each of them.

6. CONCLUSIONS

Carrying out source localization in the practical environment of a
moderately reverberant office room is a complicated task. Even
low levels of reverberation or background noise can rapidly be-
come detrimental to classical TDE-based methods. Under such
adverse conditions, incorporating these observations in the frame-
work of a sequential Monte Carlo method proves to be a substantial
advantage. Using audio data samples recorded in a real room, we
have furthermore demonstrated that algorithms based on a steered
beamforming principle show a higher degree of robustness against
reverberation and background noise. An added attraction of the
SBF-PL method is that, on the basis of some work not reported in

‡The MSTD value has an indirect influence on the parameter FCR: an
increased MSTD value may be partly responsible for a large FCR value.

this paper, it seems quite feasible to implement this algorithm in
real-time on a standard personal computer.
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