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ABSTRACT

The objective of both Bearings-only tracking (BOT) and Doppler-
bearing tracking (DBT) is to obtain the target trajectory based
on bearings, and Doppler and bearing measurements respectively,
from an observer to the target. The BOT and DBT problems are
nontrivial because the measurement equations are nonlinear. The
pseudo linear formulation allows a linear estimator to solve for the
solution, but the solution obtained is biased. This paper proposes
an estimator based on the pseudo linear equations that will produce
an unbiased solution. The proposed method applies least-squares
minimization on the pseudo linear equations with appropriate con-
straints on the unknown parameters. Simulations are included to
illustrate the performance of the proposed estimator. The pro-
posed estimator achieves the Cramer-Rao Lower Bound (CRLB)
for Gaussian noise around small error region.

1. INTRODUCTION

The tracking of a target based on the bearing angles from an ob-
server to the target is of considerable interests over the past several
decades [1]-[4]. The bearings-only tracking (BOT) requires the
target to be moving at a constant speed, while the observer must
maneuver in order to ensure a determinant solution. When the
source emits harmonic components, the harmonic signals will ex-
perience Doppler shifts at the observer so that the Doppler shift
measurements can be explored to improve the estimation of the
target velocity. The use of both Doppler shifts and bearing angles
to track a moving target is termed as Doppler-bearing Tracking
(DBT).

The measurement equations in both BOT and DBT are non-
linear, which makes the target tracking a nontrivial task. Lindgren
and Gong [1] proposed a pseudo linear (PL) estimator for the BOT
problem, where the nonlinearities are all lumped into the noise
term so that the tracking problem can be solved by Kalman fil-
tering technique. One undesirable effect in the PL formulation is
that the noisy bearing angles appear in the measurement matrix
so that it is correlated with the noise in the measurements. The
consequence is the creation of bias in the solution [2]. The bias
can be very significant, and it does not decrease as the number of
measurement increases.

Several techniques have been proposed to overcome the bias in
the BOT and DBT tracking problem [3]-[4]. Among these meth-
ods, instrumental variable (IV) is shown to be effective in remov-
ing the solution bias [4]. The IV iterative method is iterative and
requires a good initial solution guess. If the initial solution guess
is far from the true solution, the 1V method will fail to converge. In
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fact, there is no guarantee that the IV method will converge to the
correct solution even for good initial guesses, when the geometry
between the target and observer becomes unfavorable as the target
proceeds.

This paper gives an unbiased method based on the PL formula-
tion to solve the BOT and DBT problem. The proposed technique
is a constrained least-squares (LS) minimization of the PL equa-
tions. It does not require any initial solution guesses and therefore
does not have the convergence problem as experienced in the IV
method. The formulation leads to a generalized eigenvalue prob-
lem. Simulation shows that the proposed solution achieves the
CRLB for Gaussian noise over small error region. In the follow-
ing, Section 2 provides the unbiased solution to BOT, and Section
3 gives the solution method to the DBT. Section 4 presents simu-
lations and Section 5 is the conclusion.

2. BEARINGS-ONLY TRACKING

Let (z7(0), yr(0)) be the initial position of the target at time
0. Assuming the target is moving at a constant speed ( 7, yr ),
then at time ¢T", the target’s position is

zr() = xr(0)+iT &7
yr()) = yr(0)+iTyr @

where T is the observation period and i is the time index. Let
(zo(2), yo(3) ) be the coordinate of the observer at time index
7. To determine the target trajectory, the observer measures the
bearing

Bi = Bi+eai )

where B; is the true bearing and es,; 1S the measurement noise.
Given the observer positions ( (%) , ¥o (%) ) and the bearing mea-
surements 3;,7 =0, 1, --- , k, we wish to obtain the target posi-
tion atinstant k, (zr (k) , yr(k) ). Since the tartget is moving at a
constant speed, the problem becomes the estimation of the target’s
initial position (z7(0), yr(0) ) and speed (&7, yr ).

As shown in Figure 1, the true bearing 3; is related to the
target’s initial position and velocity by

sin(Bi) _ a7 (i) — zo(i)
cos(Bi)  yr(d) — yo(i)

Cross multiplying gives

®)

cos(Bi) ler (4) — 2o (9)] = sin(Bi) [yr (4) — yo(D)] = 0. (4)
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Given the bearing measurements up to time index &, upon using
(2), the target’s inital position and velocity can be found by mini-
mizing

k

> (cos(Bi) [z (0) + iTir — 2(i)]

—  sin(B:) [yr(0) + iTyr — yo(i)]) =0, (5)

which will give an unbiased solution.

The true bearing angles are not known and only the noisy bear-
ing meaurements are available. Replacing 3; by 8; in (4) results
in the equation error

€p,i = cos(Bi)[xr (1) — zo(d)] — sin(Bi)[yr () — yo(i)]. (6)

Let o = [x7(0), &7, yr(0), gr]” be the unknown parameter

Jo =

vector, g = [cos(Bo)o(0)—sin(Bo)yo(0), - -+ , cos(Br)wo(k)—
sin(Br)yo(k)]” be the measurement vector, and
cos(Bo) 0 —sin(Bo) 0
A cos(B1) Tcos(B1) —sin(B1) —Tsin(B1)
cos(.ﬂk) k'Tco.s(ﬁk) —siﬁ(ﬂk) —kTs%n(ﬂk)

be the measurement matrix. Upon using (1) and collecting the
equation errors in (6) as a vector € = [€g,0, €31, -, €3,5]",
we have

e=Ap—g. )
Minimizing e e with respect to p yields the least-squares solution

b= (ATA)_I ATg. ®)

This LS solution is biased. To see the reason, putting g =
A — e into (8) and taking expectation yields

E[p,]:ﬂ—E[(ATA)_I ATE] ©)

where g is the true solution and € is the equation error vector eval-
uated at ;. Note that the noisy bearing measurements appear in
both A and € and they are correlated. As a result, the second term
on the right of (9) is not zero and the solution (8) is biased. The
bias can be very significant. It does not decrease as the number
of bearing measurements increases and it increases with the mea-
surement noise power.

We shall propose a method that will give an unbiased solution.
The solution derivation begins by putting (2) in (6). Applying the
trigonometric identities, we have

cos(ep,i)[cos(B:) (e (i) — zo(i))
—sin(Bi) (yr (i) — yo(i))]
—sin(eg :)[sin(Bi(xT(3) — x, (7))
—cos(B:)(yr (3) — yo(4))]
[cos(Bi)(zr (i) — z,(3))
—sin(B:)(yr (4) — yo(4)) ]
—egp,i| sin(Bi(xr (i) — 2o (i)
—cos(B) (yr(4) — yo(4)) ], (10)

€8,i

Q

where small bearing errors eg,; is assumed. Squaring (10), taking
expectation and summing over ¢ up to current instant  yield

k
S Bl
i=0

k

= D leos(Bi)(@r(i) — 2o(i)) — sin(B:) (yr (i) — yo(i)) ]°

k
+ors Y [sin(Bs)(@wr (i) — 20(i))
i=0
+cos(Bi) (yr (i) — yo(9) ]?
= J0+Ue2,g Ji, (11)

where the first term Jo is the same as that in (5) and J; = Ef:o

[sin(B:) (z1(5) — zo(i)) + cos(B:) (yr (i) — o(i))]°. In order to
find an unbiased estimator by minimizing Zf:o E[e?], Ji has to
be fixed at a special value.

J1 can be kept constant by introducing one more degree of
freedom in the unknown parameter vector. Let @ be the augmented
parameter vector that is different from [, 1]7 by a scaling factor,
i.e. @ = h[u, 1)7, where h is a constant. For simplicity, define

w, = [sin(B),iTsin(B;:), cos(B:), iTcos(Bi),
~o(9)sin(Bs) — yo(i)cos(B)]" , (12)
then
Ji = zk: 0"u;u;,70 =07 Wo (13)
=0

where W = ELO u;u; 7. Note that W has the true bearing
angles that are not known. The true bearing angles can be replaced
by the noisy angle measurements. The resulting error is negligible
especially when the noise is small.

LetA, =[A, —g]T, then e = A, 0/h. In vector form, the
solution @ is obtained by minmiizing

0TATA,0 subjectto 6TWEO =1. (14)

The constant 1 in the constraint is arbitrary. Using a different value
other than 1 simply changes the constant A in 6.

The constrained minimization problem can be solved by La-
grange multiplier method by forming the auxilary cost function

E=0"ATA0+2(1-6"W0) (15)

where X is the Lagrange multiplier. Taking partial derivative of £
with respect to @ gives

ATA,0 =xW0 (16)

which indicates that @ is the generalized eigenvector. Premulti-
plying (16) by @ forms A = 87 AT A, 6 which is the quantity to
be minimized. Hence 8 is the generalized eigenvector of the pair
(AfAu, W) that gives the minimum generalized eigenvalue.
Once @ is found, then A = 6(5) and the unknown parameter vec-

tor is
_ b, 62), 63), 641"

V-170




3. DOPPLER-BEARING TRACKING

When the target and observer have relative motions where the tar-
get’s radial velocity with respect to the observer is v, then a tonal
fs from the target will experience a Doppler shift at the observer so
that the measured frequency at time index 4 relative to the source

frequency is

fz

B (1 + ) (18)
where ¢ is the propagation speed of the tone signal. Expressing the
radial velocity v in terms of the target and observer velocity [4],
(18) becomes

fi Er —2o(i) . Ay YT —Y(i) 2
—=(1-— i) i
2 o sin(Bi) . cos(Bi)

(19)
Since the true Doppler shifts and bearing angles are not available,

replacing them by the noisy measurements f; and 8; gives the
equation error

efi = ;: (1—%"(1.)31'71(&)

yr — 9o (¥) ,
—fcos(ﬁ,)> . (20)

Combining the Doppler and bearing measurement equations (20)
and (6) yields
e = A’IJ‘I _ g/ (21)
€ =lefo, €80, ek, €ak)
= [l/fs ) ZL‘T(O), a':lT, yT(O)a ?JT]T

A =
fo 0 sin(Bo) 0 cos(Bo)
0 cos(Bo) 0 —stn(Bo) 0
fi 0 siny) (:) cos(8y)
0 cos(Br) chocs(ﬂk) —sin(B) —kTs%n(ﬂk)
[ 14 30(0)sin(Bo)/c + 5o(0)cos(Bo)/c |
o(0)cos(Bo) — yo(0)sin(Bo)
1+ mo( )sin(B1)/c + yo(1)cos(Br)/c
go | moeos(8) — yo(L)sin(Br)

1+ &o(k)sin(Br)/c + Yo (k)cos(Br)/c

To(k)cos(Br) — yo(k)sin(Br)
As in the BOT case, direct minimization of €’” ¢’
solution.

Following the same argument as in BOT, it can be shown that
by putting (21) in the form &' = A/, &', where A}, = [A’ —g']
and @' = h'[’, 1]7, then minimizing

0 A'LA',0 subjectto 6TW'O =1 (22)

will give an unbiased solution. The constraint matrix W’ in this
case is given by
(k+ 1)} 0

0 0'% Ef:o (uiu,-T +viv} )
where u; is defined in (12) and the vector v; is defined as v; =

[0, cos(Bs)/c, 0, —sin(Bi)/c, —io(i)cos(Bi)/c — fo(i)
. Since the true bearing angles are not available, they

sin(Bi) /e "

will be replaced by the noisy bearing angles in W'.

will give a biased

W = (23)

4. SIMULATION

The simulations for both BOT and DBT use the scenarios de-
scribed in [4]. For BOT, the observer starts at (0,0) and is moving
along a zig-zag path at a constant speed of 12.7 m/s as shown in
Figure 2. It maneuvers at time instances k=50, 150, 250 and 350
with 90 degree turns. The target is initially at (12.7km, 12.7km)
and is moving at a constant speed of 9 m/s at an angle of 45° with
respect to the x-axis. The observation period is T' = 2s. The noise
in the bearing measurements are Gaussian white with power equal
tooj = (1°)%

Figures 3 and 4 give the root mean square errors (rmse) and
the bias in the x-coordinate position and velocity of the target tra-
jectory when the proposed method is used. The results show that
the proposed method is unbiased, and the rmse converge close to
the CRLB as the number of measurement increases. The results
from the 1V method are also included for comparison. The instru-
ment in the IV method was initialized to the true solution at time
k=100 to generate its most favorable results. While the proposed
method produces good target trajectory estimate, the IV method
diverges after k=200 and fails to converge to a solution.

For the DBT simulation, the observer is stationary at the ori-
gin. The target is initially at (20km, -18km) and proceeds due
North at 9 m/s radiating a single 300Hz tone. The observation
period in this simulation is T = 5s. The frequency measure-
ments are corrupted with zero mean Gaussian noise of power a'J% =
(0.2Hz)?, and the Gaussian noise in the bearing measurements
has a power of o3 = (1°)”. Figures 5 and 6 give the results in the
x-coordinate position and velocity estimates of the target using the
proposed method. Also given are the results from the 1V method
with initialization to the true solution at & = 100. It is clear that
the proposed method is able to track the target well and produce
position estimates close to the CRLB. This is in contrast with the
IV method where divergence occured frequently.

5. CONCLUSION

This paper proposes an unbiased estimator to the constant veloc-
ity target trajectory for the BOT and DBT problems. It applies a
constrained least-squares minimization on the pseudo linear mea-
surement equations to obtain an unbiased solution. The problem
is shown to be equal to solving the generalized eigenvector of
the augmented measurement matrix that has the smallest gener-
alized eigenvalue. The new method does not require initial solu-
tion guesses as in the instrumental variable method and therefore
avoids divergence problems. Simulation confirms that the pro-
posed estimator produces unbiased solution, and asymptotically
achieves accuracy close to the CRLB for Gaussian noise.
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