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ABSTRACT

We introduce in this paper new mixed-state particle filter algo-
rithms for direct target tracking in image sequences in a scenario
where the true target template is unknown and changes randomly
from frame to frame. We present two versions of the mixed-state
particle filter tracker using respectively the sampling/importance
resampling (SIR) technique and the alternative auxiliary particle
filter (APF) method. Monte Carlo simulation results with heavily
cluttered image sequences generated from real infrared airborne
radar (IRAR) data show that the proposed algorithms have good
performance and compare favorably to an alternative grid-based
HMM filter by yielding similar steady-state root mean-square er-
ror (RMSE) at a much lower computational cost.

1. INTRODUCTION

Conventional target trackers [1] based on the suboptimal as-
sociation of image correlation filters and linearized Kalman-
Bucy tracking filters (KBfs) are known [2] to perform poorly
in scenarios of heavily obscured targets and unknown, ran-
domly-changing target aspect. To overcome the limitations
of the correlation filter/KBf association, we propose in this
paper an alternative Bayesian approach to multiaspect tar-
get tracking using particle filters [3]. The proposed algo-
rithms enable direct tracking from the image sequence fully
incorporating the statistical models for target motion, target
aspect, and background clutter correlation.

We assume a real-valued kinematic state vector that col-
lects the position and velocity of the target centroid in the
two dimensions of the plane. The target aspect state is on the
other hand discrete-valued and defined on a finite library of
possible target models. The optimal minimum mean-square
error (MMSE) estimate of the kinematic state vector at each
frame is approximated then using a mixed-state particle fil-
ter that automatically takes into account the target aspect
changes from frame to frame. We introduce two versions of
the proposed mixed-state particle filter tracker using respec-
tively the sampling/importance resampling (SIR) [4] tech-
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nique and the alternative auxiliary particle filter (APF) [5]
method. We incorporate the target signature and the back-
ground clutter correlation models into the design of the track-
er using the likelihood function model introduced in [2].

The paper is divided into 5 sections. Section 1 is this
introduction. In section 2, we present the target motion,
target aspect, background clutter and likelihood function
models that underly the derivation of the proposed algo-
rithms. In section 3 , we present the SIR and APF mixed-
state trackers. In section 4, we examine the performance
of the proposed algorithms and compare them to the point-
mass HMM tracker previously introduced in [6]. Finally,
we present our conclusions in section 6.

2. PROBLEM FORMULATION

Let xn be a four-dimensional, real-valued kinematic state
vector that collects at instant n the position and velocity of
the target centroid in the two dimensions of the plane, de-
noted respectively dimension i = 1 and i = 2. Let sn be
a discrete-valued target aspect state defined on the finite set
I = {1, 2, . . . , K} where each state sn = l represents a
pointer to one of K possible target template models corre-
sponding to rotated, scaled and/or sheared versions of the
target’s mother template. Assuming for simplicity that the
sequences {xn} and {sn} are statistically independent for
n ≥ 0, we model the sequence {xn} as a real-valued, first-
order Markov random sequence specified by the transition
probability density function (pdf) p(xn | xn−1), and by the
pdf of the initial kinematic state p(x0). The sequence of
aspect states {sn} is in turn modeled as a discrete-valued,
first-order Markov chain defined on I and specified by the
transition probability mass function P (sn = k | sn−1 = l),
(k, l) ∈ I × I, and by the initial probability mass function
P (s0 = l), l ∈ I.

2.1. Observation Model

The nth frame in the digital image sequence generated from
the raw sensor measurements is modeled as the L × M ma-
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trix
Yn = H(x∗

n, sn) + Vn (1)

where matrix Vn represents the background clutter, and
matrix H(x∗

n, sn) is the clutter-free target image model, wh-
ich is a function of the 2D pixel location of the target cen-
troid, x∗

n and the target aspect state, sn. The two-dimensional
random vector x∗

n takes values on the finite image grid L =
{(r, j) | 1 ≤ r ≤ L, 1 ≤ j ≤ M} and is obtained from the
four-dimensional continuous-valued state vector xn by quan-
tizing the real-valued position coordinates in dimensions
i = 1 and i = 2 to the image grid.
Clutter-Free Target Signature Model For each pixel centroid
position x∗

n = (rn, jn) ∈ L, the nonlinear function H in
(1) returns a spatial distribution of (real-valued) pixel inten-
sities {ak, l(sn)}, −ri ≤ k ≤ rs, −li ≤ l ≤ ls, centered at
(rn, jn) and dependent on the aspect state sn.
Clutter Model The random clutter returns at frame n, Vn(r, j),
1 ≤ r ≤ L, 1 ≤ j ≤ M , are described by the 2D first-order,
noncausal Gauss-Markov random field (GMrf) model [7]

Vn(r, j) = βc
v [Vn(r − 1, j) + Vn(r + 1, j)]

+ βc
h [Vn(r, j − 1) + Vn(r, j + 1)] + εn(r, j) (2)

where E [Vn(r, j) εn(k, l)] = σ2
c δr−k, j−l. The unknown

parameters βh, βv and σ2
c are estimated from the data us-

ing a simplified approximate maximum likelihood (AML)
estimator, see [7] for details. The assumption of zero-mean
clutter implies a pre-processing of the data that subtracts
the mean of the background. We also assume that, after the
subtraction of the mean, the clutter frames Vn and Vm are
independent for m 6= n.
Likelihood Function Let yn be a 1D long vector representa-
tion of the image frame Yn. Assuming a GMrf background
as in (2) and assuming that the signature parameters {ak,l}
are deterministic and known, we use the results in [2] to
write the likelihood function of the hidden states xn and sn

at instant n as

p(yn | xn, sn)∞ exp

[
2λ(xn, sn) − ρ(sn)

2σ2
c

]
. (3)

In (3), the symbol ∞ denotes “proportional to”, ρ(sn) is a
target energy term that depends on the aspect state, but that
does not vary with xn away from the image borders, see [2]
for further details, and λ(xn, sn) is a data-dependent term
such that

λ(xn, sn) =

rs∑

k=−ri

ls∑

l=−li

ak,l(sn)d(x∗
n(1) + k, x∗

n(2) + l)

(4)
where x∗

n(i), i = 1, 2, is, as explained before, the quantized
centroid coordinate in dimension i, and d(r, j) is the output
of the linear differential operator

d(r, j) = Yn(r, j) − βc
h [Yn(r, j − 1) + Yn(r, j + 1)]

− βc
v [Yn(r − 1, j) + Yn(r + 1, j)] (5)

with Dirichlet (identically zero) boundary conditions. Equa-
tion (4) is valid for ri + 1 ≤ x∗

n(1) ≤ L − rs and li + 1 ≤
x∗

n(2) ≤ M − ls. For centroid positions close to the im-
age borders, the summation limits in (4) must be changed
accordingly.

3. MIXED-STATE PARTICLE FILTER TRACKERS

We use a recursive Monte Carlo simulation strategy known
as sequential importance sampling (SIS) [3] to represent the
mixed posterior p(xn, sn | Yn

1 ) by a properly weighted set

of particles
{
x

(j)
n , s

(j)
n

}
, 1 ≤ j ≤ Np, drawn from an al-

ternative mixed importance function. The minimum mean-
square error (MMSE) estimate of the kinematic state xn at
instant n is approximated then by the weighted average of

the corresponding samples
{
x

(j)
n

}
.

Sampling/Importance Resampling (SIR) Tracker Let Xn =
[
xT

n sn

]T
be the extended state vector at frame n. A simple

SIS strategy [8] is to use the Markovian transition kernel
p(Xn | Xn−1) to generate the particle set at instant n and
then update the particle weights [3, 8] using the likelihood
function p(yn | Xn).

A practical problem associated with the use of sequen-
tial SIS filters is however that, as the number of iterations in-
crease, the distribution of particle weights may get increas-
ingly skewed, resulting in particle degeneracy. The sam-
pling/importance resampling (SIR) [4] technique attempts
to mitigate this problem by introducing an additional parti-
cle selection step that consists of resampling from the orig-
inal particle set with replacement according to the impor-
tance weights. After the selection step, the particle weights
are all reset to 1/Np. Using the GMRf-based likelihood
function model from section 2.1, we summarize in Table 1
the SIR filter for direct, multiaspect target tracking from im-
age sequences in the special case when we add the simpli-
fying assumption of statistical independence between target
motion and target aspect such that we can generate the parti-

cle sets
{
x

(j)
n

}
and

{
s
(j)
n

}
by sampling independently from

p(xn | x
(j)
n−1) and P (sn | s

(j)
n−1).

Auxiliary Particle Filter (APF) Tracker The SIR tracker de-
scribed before has the disadvantage of sampling blindly from
p(Xn | Xn−1) ignoring the current observation yn. An
alternative strategy to reduce the sensitivity of the tracker
to outliers is to use auxiliary particle filtering (APF) [5] In
intuitive terms, APF can be viewed as resampling (or pre-
selecting) the particles at instant n − 1 based on the likeli-
hood of certain point estimates X̂

(j)
n that represent p(Xn |

X
(j)
n−1). Formally, that is accomplished by introducing an

auxiliary integer variable k defined on the set {1, 2, . . . , Np}.
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1.Initialization For j = 1, . . . , Np

• Draw x
(j)
0 ∼ p(x0)

and s
(j)
0 ∼ P (s0).

• Make w
(j)
0 = 1/Np and set n = 1.

2.Importance Sampling For j = 1, . . . , Np

• Draw x̃
(j)
n ∼ p(xn | x

(j)
n−1).

• Draw s̃
(j)
n ∼ P (sn | s

(j)
n−1).

• Compute the importance weights

w̃
(j)
n ∞w

(j)
n−1 p(yn | x̃

(j)
n , s̃

(j)
n ),

∑Np

j=1 w̃
(j)
n = 1

using equations (3), (4), and (5).
3.Selection
• Generate a new set of samples{
x

(j)
n , s

(j)
n

}
1 ≤ j ≤ Np

such that P (
[
x

(j)
n , s

(j)
n

]
=

[
x̃

(k)
n , s̃

(k)
n

]
) = w̃

(k)
n .

• Make w
(j)
n = 1/Np, 1 ≤ j ≤ Np.

• Set n = n + 1 and go back to step 2.

Table 1. Algorithm I: Mixed-State SIR Filter for Multi-
aspect Target Tracking in Images.

We sample then from the importance function

q(k, Xn | yn)∞w
(k)
n−1 p(yn | X̂(k)

n )p(Xn | X
(k)
n−1) . (6)

where X̂
(j)
n is e.g. the mean of or a draw from p(Xn |

X
(j)
n−1). Table 2 summarizes the APF filter for multiaspect

target tracking using the models developed in section 2 and
assuming as before statistical independence between target
motion and target aspect. The initialization step is identical
to the same step in Table 1 and is omitted here for concise-
ness.

4. SIMULATION RESULTS

We examine in the sequel the performance of algorithms
introduced in section 3 using a simulated image sequence
generated from real infrared airborne radar (IRAR) data ob-
tained from the Center for Imaging Sciences at Johns Hop-
kins University. The simulated background sequence con-
sists of synthetic GMrf sample frames whose spatially vari-
ant local means and correlation parameters are estimated
from a real IRAR base image. We add then to the back-
ground sequence a simulated moving target whose centroid
position and velocity change from frame to frame accord-
ing to a linear white noise acceleration motion model [1].
The unknown initial target position is uniformly distributed
between pixels 20 and 60 in the vertical dimension and be-
tween pixels 20 and 40 in the horizontal dimension. The
initial target velocity in both dimensions is a sample from a
Gaussian random variable with mean 10m/s and standard

For n=1,2,...
Importance Sampling: for j = 1, . . . Np

• Draw x̂
(j)
n ∼ p(xn | x

(j)
n−1).

and ŝ
(j)
n ∼ P (sn | s

(j)
n−1).

• Compute the first-stage weights

Λ
(j)
n ∞w

(j)
n−1p(yn | x̂

(j)
n , ŝ

(j)
n )

∑Np

j=1 Λ
(j)
n = 1

using equations (3), (4), and (5).
• Draw k(j) ∼ {1, 2, . . . , Np}

with
{

P (k(j) = i) = Λ
(i)
n

}
, i = 1, . . . , Np.

• Draw x
(j)
n ∼ p(xn | x

(k(j))
n−1 ),

and s
(j)
n ∼ P (sn | s

(k(j))
n−1 ).

• Compute the second-stage weights

w
(j)
n ∞

p(yn|x(j)
n , s(j)

n )

p(yn| x̂
(k(j))
n , ŝ

(k(j))
n )

∑Np

j=1 w
(j)
n = 1

using equations (3), (4), and (5).

Table 2. Algorithm II: Mixed-State Auxiliary Particle Filter
for Multiaspect Target Tracking in Images.
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Fig. 1. Cluttered target sequence, PTCR=3.6 dB: (a) first
frame, (b) tenth frame with random target translation, rota-
tion, scaling, and shearing.

deviation σ = 0.1m/s. The random target aspect is ini-
tialized with an unknown template model chosen uniformly
from the template library I and is subsequently changed
from frame to frame according to a discrete Markov chain
model with five states and a 40 % probability of transition to
an adjacent state. The target pixel intensity is time-invariant
and known and was set according to a desired low level
of contrast between the template and the background. Fig-
ures 1 (a) and (b) show two simulated frames, respectively
at instants n = 0 and n = 9, with peak target-to-clutter ra-
tio (PTCR) equal to 3.6 dB. We tracked the simulated target
over 13 consecutive frames using respectively the SIR fil-
ter in Table 1, the APF filter in Table 2, and the grid-based
multiaspect HMM tracker introduced in [6]. Both the SIR
filter and the APF use Np = 5, 000 particles. Figure 2(a)
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shows the root mean-square error (RMSE) of the horizontal
position estimate for the SIR (solid line) and APF (dashed
line) trackers in a scenario where the PTCR was lowered to
-3.6 dB. Both trackers diverged in 5 out of 100 Monte Carlo
runs. The error curves in Figure 2 were obtained excluding
the divergent tracks from the average. We see from the plots
that, excluding the rare occasions when the particle filters
diverge, both algorithms show good performance quickly
acquiring the target after an initial error and converging to a
low steady-state RMSE. The APF algorithm seems to out-
perform the SIR tracker slightly in terms of steady-state er-
ror.

Figure 2(b) shows the RMSE in number of pixels this
time for the vertical position estimates obtained by the HMM
(solid line) and APF (dashed line) trackers. We see from
the plots in Figure 2(b) that the auxiliary particle filter has
a slower target acquisition time, but eventually converges
to a steady-state RMSE that is indistinguishable from the
error of the HMM filter. The HMM tracker is however
computationally expensive requiring at each frame, see [6],
the evaluation the likelihood function in all points of the
image grid for all aspect states. For an L × L grid, that
means a computational cost of order O(αL2) where usually
α << L. By contrast, each iteration of the particle filter
trackers requires the evaluation of the likelihood function
only for the Np samples in the current particle set, thus re-
ducing the computational cost to O(βNp). If Np << L2,
the computational savings may be considerable. Overall,
our simulations suggest that the particle filter trackers com-
pare favourably to the grid-based HMM tracker in [6] by
yielding similar RMSE performance roughly 95 % of the
time, but at a much lower computational cost.
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Fig. 2. (a) Horizontal coordinate estimate RMSE for the
SIR filter (solid) and the Auxiliary Particle Filter (dashed),
PTCR= -3.6 dB; (b) Vertical coordinate estimate RMSE
for the HMM filter (solid) and the Auxiliary Particle Filter
(dashed), PTCR=-3.6 dB.

5. CONCLUSIONS

We introduced in this paper a new Bayesian framework for
multiaspect target tracking in image sequences using mixed-
state particle filters that fully incorporate the statistical mod-
els for target motion, target aspect and background clut-
ter correlation. Two versions of the mixed-state particle
filter tracker were introduced, using respectively the sam-
pling/importance resampling (SIR) technique and the alter-
native auxiliary particle filter (APF) method. Monte Carlo
simulation results with heavily cluttered image sequences
generated from real infrared airborne radar (IRAR) data show
that the proposed algorithms have good performance and
compare favorably to an alternative grid-based HMM fil-
ter by yielding similar steady-state root mean-square error
(RMSE) at a much lower computational cost.
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