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ABSTRACT

Classical multidimensional scaling is a simple, linear tech-
nique for finding coordinates of points given their inter-
point distances. In this paper we describe the algorithm and
show how it can be used to solve the geometric microphone
array calibration problem. The method requires no compli-
cated hardware or calibration targets, just a tape measure (or
similar measuring device). We also extend the basic algo-
rithm to handle the case when some distances are unavail-
able, which makes the technique practical for microphone
arrays with relatively large numbers of microphones.

1. INTRODUCTION

An important problem in microphone arrays is geometric
calibration, viz., determining the locations of the micro-
phones. These locations are prerequisite, for example, for
acoustic localization and beamforming. Common solutions
to the problem require expensive calibration targets and/or
nonlinear optimization techniques that are subject to local
minima [3, 4].

Multidimensional scaling (MDS) is a field of study con-
cerned with embedding a set of points in a low-dimensional
space so that the distances between the points resemble as
closely as possible a given set of dissimilarities between ob-
jects that the points represent [1, 2]. For decades MDS has
been a popular technique for analyzing experimental data in
the physical, biological, and behavioral sciences.

Metric multidimensional scaling is a subset of MDS in
which the dissimilarities are themselves (possibly noisy) dis-
tances. More precisely, the metric MDS problem is the fol-
lowing: Given noisy distances between a set of points in a
Euclidean space, estimate the coordinates of those points.
As an example, Figure 1 shows a map of the United States
computed from the driving distances between major cities
published in a road atlas, using the technique described in
Section 2. Even though the driving distance between two
cities is a poor approximation to their actual distance, the
resulting map is accurate.

In this paper we show that metric MDS yields a simple,
linear algorithm for determining the microphone locations
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Fig. 1. Map of the U.S. based on driving distances between
major cities, using classical multidimensional scaling.

given only their pairwise distances. Thus, with a simple
tape measure (or similar measuring device) and a few lines
of matrix algebra, the coordinates of all the microphone co-
ordinates can be found. After presenting the basic algo-
rithm in Section 2 below, we then extend it to handle the
case when not all the distances are available. This extension
makes the algorithm practical even for microphone arrays
with a relatively large number of microphones.

2. CLASSICAL MULTIDIMENSIONAL SCALING

Suppose we have � microphones in a �-dimensional space
(usually � � �). Classical multidimensional scaling, which
is a specific technique developed by [5] and made popular
by [6] for solving the metric MDS problem, provides a sim-
ple procedure for finding their locations as follows [2].

First construct a squared-distance matrix � where each
entry ��� is the squared distance between microphones � and
�: ��� � Æ��� � �x��x��� �x��x��, where Æ�� is the distance
between microphones � and �. From � compute the inner
product matrix � � � �

�
��� , where � � � � �

�
��

� is the
double-centering matrix and � is a vector of all ones.

Without noise, � � 		� , where 	 � � x�
 � � � 
 x� �
�

V - 1570-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡



is the � � � matrix of coordinates, and hence r��
��� �
r��
�		� � � r��
�	� � �. Since � is symmetric pos-
itive semi-definite, it may be decomposed as � � � �� � ,
where � � diag���
 � � � 
 ���, the diagonal matrix of eigen-
values of �, and � � � v�
 � � � 
 v� �, the matrix of corre-
sponding unit eigenvectors. For convenience the eigenval-
ues are labeled so that �� � � � � � �� � �. Since � is of
rank �, it has � non-zero eigenvalues and �� � zero eigen-
values and hence may be written as � � �����

�
� , where

�� � diag���
 � � � 
 ��� and �� � � v�
 � � � 
 v� �. The coor-

dinate matrix 	 is then given by 	 � ���
�

�

� .
With noise (i.e., the measured distances are imperfect),

� will not be of rank � but rather will be full rank in prac-

tice (i.e., ���
��� � �). Conveniently, 	 � ���
�

�

� still
yields the optimal estimate of the coordinates, in the sense
that

��
���

��
����Æ

�

�� � �Æ����
� is minimized, where �Æ�� is the

estimated distance between the two microphones. In the
terminology of principal components analysis (PCA), ��
contains the � eigenvectors that capture the most significant
variation in the data.

By the procedure just described, the coordinates 	 of
the microphones may be estimated from the distances be-
tween them. The resulting coordinates, of course, are unique
only up to an arbitrary translation, rotation, and reflection,
since for any normalized orthogonal matrix 	,
� � �� 	���� 	�� � � �� � .

3. MISSING DATA

The technique of the previous section requires measuring
all ��� � 
��� pair-wise distances. Although this may be
feasible for microphone arrays with a small number of mi-
crophones (say, � � 
�), it becomes impractical as � in-
creases.

Since without noise � is of rank �, there is much re-
dundancy in � and �. In fact, it can be shown that in a
�-dimensional space one need only measure the distances
between each point and a set of � � 
 basis points, which
is
��

��� 
 � �� � 
��� � � � 
� measurements. The sav-
ings can be significant: 
� measurements instead of 
�� for
� � 
�, or 
�� measurements instead of 
��� for � � ��,
with � � �. In this section, we derive a basis for the three-
dimensional world (3D) by first looking at cases of 1D and
2D. The derivation is based on the equations found in [7].

3.1. Deriving a 1D basis

Suppose we can measure the distance Æ�� between two
points � and �. By arbitrarily placing them on the � axis
(i.e., �� � �� � �� � �� � �) and setting the origin
as their midpoint we get the following coordinates for the

points:

�� � ��� � �


�
Æ�� 


where we have arbitrarily chosen the negative sign.
� and � define a basis in a 1D space. Given the dis-

tances Æ�� and Æ�� between � and � and some point �,
the definition of distance gives

Æ��� � ��


�
Æ�� � ���

� � ��� � ��� (1)

Æ��� � �



�
Æ�� � ���

� � ��� � ����

Combining these equations and solving for �� yields

�� �
Æ��� � Æ���

�Æ��
� (2)

Thus, Eq. (2) provides the �-coordinate of an arbitrary point
� given the distances between it and the basis points � and
�.

3.2. Deriving a 2D basis

If � does not lie exactly on the line connecting � and �
(the � axis), then its residual distance to that line will be
nonzero. The square of the residual distance from � to the
�-axis can be computed from Eqs. (1) and (2):

��� � ��� � Æ��� � ��


�
Æ�� � ���

�

�



�
Æ��� �




�
Æ��� �




�
Æ��� � ���� (3)

Rearranging yields a convenient formula that we will use
again:

��� � ��� � ��� �



�
Æ��� �




�
Æ��� �




�
Æ���� (4)

We may augment the basis with a third point �, where
�	 is computed using Eq. (2). By arbitrarily placing � in
the ��-plane (i.e., �	 � �), its �-coordinate can be found
from Eq. (3):

�	 �

�



�
Æ��	 �




�
Æ��� �




�
Æ��	 � ��	 


where we have arbitrarily chosen the positive square root.
�, �, and � now provide a basis for a 2D space. Given

the distances Æ��, Æ��, and Æ	� for some point �, the
definition of distance

Æ�	� � ��	 � ���
� � ��	 � ���

� � ��	 � ���
�


by rearranging terms, gives

��	�� � ��	 ���	 ��������� ���� Æ�	����	��� (5)
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Applying Eq. (4) to the points � and �, and substituting
back into Eq. (5) yields

��	�� �



�
�Æ��	�Æ����Æ��	�Æ����Æ�����Æ�	����	���

Solving for ��,

�� �
Æ��	 � Æ��� � Æ��	 � Æ��� � Æ��� � �Æ�	� � ��	��

��	
�

(6)
Thus, Eqs. (2) and (6) provide the �- and �-coordinates of
an arbitrary point � given the distances between it and the
basis points �, �, and �.

3.3. Deriving a 3D basis

Given distances Æ�
, Æ�
, and Æ	
, we may augment the
basis with a fourth point �, where �
 and �
 are found us-
ing Eqs. (2) and (6), respectively. To find �
, simply apply
Eq. (4) to �, yielding

�
 �

�



�
Æ��
 �




�
Æ��� �




�
Æ��
 � ��
 � ��



where we have again arbitrarily chosen the positive square
root.

The points �, �, �, and � now provide a basis for a
3D space. Given the distances Æ��, Æ��, Æ	�, and Æ
� for
some point �, the definition of distance for Æ �
� gives, after
substituting Eq. (4) and solving for ��,

�� �



��


�
Æ��
 � Æ��
 � Æ��� � Æ��� � Æ���

��Æ�
� � ��
�� � ��
��
�
� (7)

Thus, Eqs. (2), (6), and (7) provide the �-, �-, and �-coordinates
of an arbitrary point � given the distances between it and
the basis points �, �, �, and �.

4. SIMULATIONS

We tested the approach presented here using simulations in
Matlab. We ran three separate experiments, in each case
testing the robustness of the algorithm with respect to vari-
ous types of noise.

The ground truth microphone locations were stored in
an � � � matrix � , where � is the number of dimensions,
while the result of the algorithm was stored in an � � �
matrix 	 . Since the solution has an arbitrary translation,
rotation, and reflection, we measured the root-mean-square
(RMS) error in the solution as

�
����, where

�� �

��
���

��� x� � y��
� ��� x� � y��
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Fig. 2. Classical MDS is accurate and robust with respect to
Gaussian measurement noise.

where y� is the �th row of � , x� is the �th row of 	 , and �
is the normalized the orthogonal matrix that best aligns the
points by rotating and reflecting them. (Note that the best
translation vector is the zero vector if the centroid of the
points is the origin.) The � which minimizes �� is given
by [2]

� � �	�� � �	�
�

� �� �	����

Note that this approach is simpler than Procrustes’ analysis,
which also allows for scale changes between the point sets.

4.1. Perturbing distances with Gaussian noise

First we distributed a number of microphones randomly, us-
ing a uniform distribution, in a cubic room 5 m � 5 m �
5 m. We then constructed a squared-distance matrix �, per-
turbed with additive, independent Gaussian noise. The out-
put of the classical MDS algorithm described in Section 2
was evaluated using the error metric described above.

We followed this procedure while varying the number
of microphones and the standard deviation of the Gaussian
noise. The number of microphones ranged from 4 to 20,
and the standard deviation of the noise �� was ���
 m and
��
 m. The results are displayed in Figure 2, where each
data point represents the average over 1000 trials.

For realistic measurement error (�� � ���
 m) possible
with even a simple measuring device such as a tape measure,
the RMS error is just 
�� mm with four microphones and
less than � mm with at least eleven microphones. These
errors are significantly smaller than the wavelength of the
highest audible frequency, which is approximately 
� mm.
When the measurement error is increased by an order of
magnitude, the RMS error remains less than � cm. Thus, we
conclude that the accuracy of classical MDS is well above
that required for calibrating microphone arrays.

4.2. Perturbing distances with impulse noise

Unfortunately, the algorithm is not so forgiving with im-
pulse noise, as shown in Figure 3, where each data point
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Fig. 3. Classical MDS is sensitive to impulse measurement
noise (e.g., missing data).

again represents the average of 1000 trials. This plot shows
the RMS error that occurred when a certain percentage � of
the distances were set to zero (similar results were achieved
with other values) to simulate missing data. With just 1% of
the distances missing, the RMS error ranges from � cm to

 cm, and with 5%, it ranges from 
� cm to �� cm. Clearly,
when some data are missing we cannot simply ignore that
fact.

4.3. Handling Missing Data

To test our ability to handle the missing data, we ran simu-
lations for � � 
�, ��, and ��. For each set of microphones
we placed them randomly in space, selected the four best
microphones for a basis set (where “best” is defined below),
and then filled in missing data using the equations of Sec-
tion 3. We varied the fraction of missing data from 0 to the
maximum allowable for that number of microphones. Plot-
ted in Figure 4 are the results, averaged over 100 trials per
data point. The RMS error remains below � mm, even when
nearly 80% of the measurements are unavailable. These re-
sults confirm the statements of [8] and [9] that only about
25-33% of the measurements are needed in practice.

To achieve good results, the basis points should span the
space as much as possible, i.e., the volume of the pyramid
they define should be as large as possible ([9] gives an al-
ternate measure). The volume of this pyramid can be easily
computed as �����, where � is the determinant of the fol-
lowing �� � matrix:

� �

���� x� x� x	 x


 
 
 


���� �

5. CONCLUSION

The positions of microphones in an array can be computed
using a simple, linear algorithm derived many years ago in
the context of multidimensional scaling. The algorithm re-
quires as input the distances between microphones, which
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Fig. 4. Classical MDS is robust with respect to missing data
when that data is filled in using the technique described in
Section 3.

can be measured with a standard tape measure or similar de-
vice. We have shown using simulations that the algorithm is
robust with respect to Gaussian noise at the level one would
expect in practice. We have also presented a technique for
handling missing data and have shown that the algorithm is
quite robust, even when a large percentage of the measure-
mens are unavailable.
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