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ABSTRACT

When there is a relative motion (rm) between a signal source
and a receiver, the signal arrives at the receiver with a time-
scaling. Under this condition, estimating the time-difference-
of-arrival (TDOA) of the signal at two receivers will have
large errors, if the estimator ignores the effects of the rm.
The correct approach estimates both the TDOA and scale-
difference-of-arrival (SDOA) between the signals of the two
receivers, via the maximization of the cross-ambiguity func-
tion (CAF).

This paper first derives the bias of TDOA estimation un-
der rm, when neglecting SDOA. It then gives a new, fast
method, based on the Newton root finding algorithm, for
determining the maximum of the CAF. Simulation results
indicate that the TDOA and SDOA mean square errors at-
tain the Cramer Rao Lower Bound.

1. INTRODUCTION

The measurement of the time-difference-of-arrival (TDOA)
of a signal at two separate receivers is the first step to passive
localization [1]. This has wide applications in sonar, radar
[1, 2], geolocation [3], electronic warfare [4], and more re-
cently the determination of E-911 mobile phone dialers, and
vehicle positions in an Intelligent Vehicle Highway Systems
[5, 6].

A common TDOA estimator cross-correlates the two re-
ceiver outputs and takes the lag (or time shift) at which the
correlation function peaks, as the TDOA. This gives sat-
isfactory results when there is no relative motion (rm) be-
tween the signal source and the receivers. When there is, the
signals arriving at the receivers suffer a time-scaling. This
time-scaling creates a scale-difference-of-arrival (SDOA)
since the rm between a source and one receiver is differ-
ent from another receiver, unless the source is traveling per-
pendicular to and exactly between the stationary receivers.
When there is SDOA, the receiver outputs have poor corre-
lation, even though they are from the same source [7]. Esti-
mating TDOA by simple cross-correlation becomes unreli-
able. It has a large bias, which is proportional to the SDOA
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and the record length. The bias is the dominant error. To im-
prove accuracy, it is necessary to compensate for the SDOA.
This is wideband processing [8].

Let the receiver outputs be

W) = )+ ()
v = 5 (E2) +v0) @

where s(t) is the signal, ¢(¢) and v (t) are the noise sources
which are independent of each other and of s(t). In y(¢),
the signal s(¢) has an SDOA “a” and TDOA “D”. Wide-
band processing is the maximization of the cross-ambiguity
function

T
CAF(a,T) = /0 z(t)y(at — 7)dt 2

over a record length T by the choice of «, 7. In (2), when
there is no noise

y(lat —71) =5 <w)

a

©)

so that (2) is a maximum when a = a, 7 = D. At present,
there is no closed-form solution for @ and r, other than
through a 2-D search. This requires computation of (2) for
each possible pair of «, 7 within a range. This is time con-
suming especially since y(¢) is in general a random signal
and there is no fast way to time-scale it by an arbitrary, non-
integer a.

It is tempting to consider avoiding the large bias due to
a long record length, by partitioning 7" into several smaller
segments and computing the TDOA for each segment [9].
If the TDOA is relatively constant over T', the final estimate
is the average of the TDOAs. If the TDOA is approximately
a function of time, a least squares fit through the TDOAs
will give the TDOA estimate as a function of time [10]. The
idea of segmenting 7', or noncoherent processing, is that
the decorrelating SDOA effects become negligible for short
segments, and if there is no rm, the average estimation vari-
ance is equal to that of processing with the non-partitioned
T [9].
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However, as (13) in Section 2 shows, segmentation pro-
cessing and coherent processing have the same amount of
bias of (1 — a)Z, where IV is the data length in seconds,
assuming sampling time is 1 second. Thus wideband pro-
cessing is necessary when the bias is not acceptable.

This paper presents an iterative search for finding the
TDOA and SDOA that maximize the discrete form of (2).
The key is in representing y(n) by an analytic expression
which has first and second derivatives. Then the maximiza-
tion is a direct application of Newton’s root finding algo-
rithm [11]. To reduce computations at each iteration, the
procedure employs a fast time-scaling method that requires
only O(N(2L+1)), where L is the maximum number of in-
terpolating sinc coefficients. Compared to [12], the savings
are significant.

In the remainder of this paper, Section 2 derives the
TDOA bias, Section 3 formulates and describes the search
procedure, Section 4 contains the simulation results and the
conclusions are in Section 5.

2. TDOA BIAS

The relationship between a band limited white noise (BLWN)
process s(t) and its 1 Hz samples s(n),n = 0,1, ..., N -1,
is

N-1
s(t) = s(n)sinc(t — n) 4)
n=0
where
sinc(+) = Si;z()') ®)

Time-scaling s(¢) by a and time-shifting it by D give

(t 2D> =" s(k)sinc (# - k) 6)

k

z(t)=s

In (6) and in the sequel, all summations are from0to N —1,
unless otherwise stated.

Now z(t) and s(t) are jointly nonstationary due to the
time-scaling operation. Thus the crosscorrelation of s(¢)
and z(t — 7) will be dependent on both ¢ and 7. From (4)
and (6)

E{s(t)z(t—7)} = Z Z E{s(n)s(k)} x
n k
sinc(t — n)sinc (# — k) )

Let s(n) be zero mean white noise samples of variance o2,
then

E{s(t)2(t — 1)} =
o? Z sinc(t — n)sinc (ﬂ - n) (8)

a

From Schwartz’s inequality [11], (8) is maximum when
T=(1—-a)t+D 9)

which is the estimate of TDOA, when neglecting SDOA.
The bias is

T—D=(1-a)t (10)
which, on averaging ¢ from 0 to IV, is

% /ON(1 oyt = L=V _;)N (11)

which agrees with the bias obtained in [7] by the frequency
domain approach.

Consider next segmentization processing which breaks
the IV points into M segments of K = N/M points each.
The bias of the i-th segment, ¢ = 1, ..., M, is from (10)

bit) =(1—a)t+(GE—-1)K], 0<t<K (12)
Since the TDOA estimate is the average of the M estimates,
the averaged estimate has bias

1-a) X[t + (i - K]

M

(M -1)K
)

b(t) =

= (1-a) [t + (13)

Averaging ¢ over K seconds then gives the bias (1 — a)%’,
identical to (11). Thus segmentization cannot reduce the
TDOA bias and simulation in Section 4 has confirmed this

assertion.

3. CAF MAXIMIZATION
When there is rm and the TDOA bias is too large, wideband
processing is necessary. It is the maximization of CAF in
(2). Let the samples of (1) be z(n) and y(n), then the equiv-

alent discrete form of (2), with minimization replacing max-
imization, is

J(©) = [z(n) — ylan — 7)]? (14)

where
O=a 77 (15)

Following (4) and (6),

ylan —7) = Z y(k)sinc(an — 7 — k) (16)
k
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Minimization of (14) in general requires a 2-D grid search in
©, This is time consuming since for each @, it is necessary
to compute (16) and then (14).

This paper presents a faster alternative. Putting (16) into
(13) and applying Newton’s method [11] yields the iteration

. . 9tJ 17" [aJ
i+1 i Y
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At the i-th iteration, the value of @7 is used in the evaluation
of the partials
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For computational convenience, let

e(n) = =z(n)-— Z y(k)sinc(an — 7 — k) (20)
k

e1(n) = y(k)sinc'(an — 7 — k) (21)
k

ea(n) - Z y(k)sinc” (an — 7 — k) (22)
%

with sinc’(+) and sinc” (- ) denoting the first and second der-
ivatives of sinc(-) with respect to (-). Then it is easy to
compute the partials in terms of e(n), e1(n) and ex(n).

The iteration stops when ||@**+! — @%|| < TH, a pre-
determined threshold value. To ensure that the CAF attain
its global minimum within a ®-grid, the algorithm takes on
several initial conditions, and records the J(®). The © that
gives the minimum is the estimate.

Computing (16) requires O(N?). However, by noting
that the sinc function decays rapidly from its maximum,
truncating the summation in (16) to just a few points near
the peak of the sinc function can give a quick and accurate
approximation of (16). Let (16) become

lo+L
ylan — 1) = Z y(k)sinc(an — 7 — k) (23)
k=lo—L
where
lo = |an — 7| (24)

is the integer values of an — 7. This operation makes 0 <
lan — T — lg] <1, so that the largest sinc function samples
are present in (23). The number of computations for (16)
now reduces to O(IN (2L +1)), which is a significant saving.
By simulation, Section 4 shows that the truncation errors are
negligible for L > 5.

4. SIMULATION EXPERIMENTS

This section describes two experiments to corrobate the de-
velopments in Sections 2 and 3. Both signal and noise are
zero mean, Gaussian BLWN.

4.1. TDOA bias

This is an evaluation of the TDOA bias when rm is present
but the estimator neglects the SDOA.

With no additive noise, Figure 1 plots the TDOA bias
against N, fora = 1.001and D = 0, at M = 1, i.e,
no segmentation and M = 4 segments. The biases from
simulation agree with the formula of (11), and confirm that
segmentation cannot reduce the bias.

4.2. TDOA and SDOA estimation
The signal-to-noise-ratio is
SNR = 10logo?/o7 (25)

where 02 = ¢2 are the variances of the BLWN processes
¢(t) and 4 (t) in (1). Applying (17) to find the © that maxi-
mizes the CAF of (14), the iterative search starts with D = 0
and a = 1.002. The true values are D = 0 and a = 1.001,
and N = 513. Whenever the convergenceistoa |D| > 0.5,
the search reinitializes with D = 0 and a = 1.001 plus a
random number. Convergence usually occurs in at most 14
iterations.

Figures 2 and 3 are the MSE of the TDOA and the SDOA
estimates, as a function of the SNR. The mean square error
is

wspip = B0 =7

where 7* is the TDOA estimate of the i-th trial. Also plotted
is the Cramer Rao Lower Bound (CRLB) [10] When using
the truncation of (23) instead of (16), the MSE attain the
CRLB at high SNR, but diverge earlier from the CRLB for
smaller L, the number of sinc coefficients. Other simula-
tions with different D and a give similar results.

(26)

5. CONCLUSIONS

Estimation of TDOA when there is rm between the source
and receivers requires SDOA compensation because the bias
is large. An error analysis shows that if the estimator as-
sumes no SDOA but in fact there is, there is a bias that is
approximately equal to (152) N. This bias dominates the
errors and is the same even with segmentation processing.
The proper approach is joint TDOA and SDOA estima-
tion. It is through the maximization of the CAF, which re-

quires a 2-D search. Section 3 proposes a faster Newton-
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based iterative technique. A truncation of the sinc interpola-
tion in time-scaling also helps reduce computations. Simu-
lation results have shown that this estimator attain the CRLB
for Gaussian signals and hence is optimum.
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