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ABSTRACT

This paper presents a novel method for tracking the azimuth
locations of multiple active sources based on binaural
processing. Binaural cues are strongly correlated with source
locations for spectral regions dominated by only one source.
Therefore, this approach integrates reliable information across
different frequency channels to produce a likelihood function in
the target space. Finally, a hidden Markov model (HMM) is
employed for forming continuous tracks and detecting the
number of active sources across time. Experimental results are
presented for simulated multi-source scenarios.

1. INTRODUCTION

Computational auditory scene analysis aims at separation of
multiple sound streams, such as speech, environmental noise,
music, etc. The auditory system is able to segregate the target
signal from the acoustic mixture using various cues, including
pitch, onset time and location. Experiments with stationary
sources under anechoic conditions show good separation results
when accurate locations are given [1]. However, in a realistic
environment source motion and head movement must be
considered. The goal of this paper is to examine the use of
acoustical information for multi-source tracking.

Among the numerous tracking systems proposed, arrays of
microphones have been shown to provide accurate results for
locating sound sources in a number of scenarios [2][3]. When
restricting the size of the array to only two sensors as humans
have, the multi-source tracking problem becomes a challenging
task and little has been attained in this respect. As a solution,
fused visual and auditory information is generally used in this
type of applications where the auditory stream helps mainly in
resolving ambiguities during occlusions [4].

We present a novel auditory tracking system based on
binaural cues extracted from responses of a KEMAR dummy
head that realistically simulates the filtering process of the head,
torso and external ear. A typical approach for tracking
applications is Bayesian inference [5]. We study a model that has
been successfully applied to multi-pitch tracking under noisy
conditions [6].

The rest of the paper is organized as follows: the next section
describes auditory motion modeling. Section 3 contains the
model description and provides details of the statistical model
employed. Section 4 gives simulation results and the last section
concludes this paper.
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2. MODELING AUDITORY MOTION

For human audition, sound source localization is primarily
achieved with the binaural cues, of interaural time differences
(ITD) and interaural intensity differences (IID). In this paper,
source localization refers to azimuth localization in the
horizontal plane. Measurements and models of head-related
transfer functions (HRTF) are the standard method for a realistic
binaural synthesis. We utilize here a catalogue of HRTF
measurements collected by Gardner and Martin from a KEMAR
dummy head under anechoic conditions [7].

For a moving sound, there are changes in ITD and IID that
give velocity cues and enable the listener to perceive and track
the source location. In addition, as the relative distance between
the listener and the sound event changes there is a shift in
frequency called the Doppler effect. For motions induced by
human walking, however, the Doppler shift is negligible and
thus not used in this study.

2.1 Binaural simulation

The transmission path for an HRTF measurement contains many
subsystems, i.e. the loudspeaker, the microphone and the ear
canal, that need to be compensated in order to obtain the desired
response. Therefore, we use diffuse-field equalized HRTFs that
eliminate all the factors that are not location-dependent.

An attractive property of the HRTFs is that they are almost
minimum-phase [8]. Therefore, a standard way of modeling
HRTFs is to decompose the system into a cascade of a
minimum-phase filter and a pure delay line that implements the
ITD [9]. The motivation is that minimum-phase systems behave
better than the raw measurements for interpolation both in the
phase and the magnitude response. In addition, a minimum-
phase reconstruction of HRTF does not have perceptual
alterations [10]. Here, the minimum-phase part is computed
using the inverse Hilbert transform and the ITD is estimated as
the mean of the excess phase in the range of interest from 80 Hz
to 5 kHz.

The input to the system is monaural recordings sampled at
44.1 kHz. Binaural responses at the left and right eardrums are
synthesized by filtering the signals with direction-dependent
impulse responses hp g(n;¢), where ¢ is a time-varying
azimuth. The database of HRTF measurements has a resolution
of 5°. Separate tables for the corresponding minimum-phase
filters and time delays are computed and a simple two-way linear
interpolation is applied. For an arbitrary direction of sound
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incidence, the impulse response is reconstructed from the
cascade of those two processes.

2.2 Auditory periphery and binaural processing

It is widely acknowledged that cochlear filtering can be modeled
by a bandpass filterbank. The filterbank employed here consists
of 128 fourth-order gammatone filters [11] with channel center
frequencies (CCF) equally distributed on the ERB scale between
80 Hz and 5 kHz. In addition, we adjust the gains of the
gammatone filters in order to simulate the middle ear transfer
function [12]. In the final step of the peripheral model, a simple
model of hair cell transduction consists of half-wave rectification
and a square root operation.

For each frequency channel ¢, a normalized cross-
correlation function is computed in the plausible range of ITD
from —1 ms to 1 ms. The lag 7, (—44 <1, <44) of a peak in the

cross-correlation function is a candidate for ITD estimation. At
high frequencies where multiple peaks are present the set of all
possible time lags {z.} is considered, and this creates ambiguity

in localization. We resolve this ambiguity by using IID
information, which is given by the ratio of signal power at the
two ears. We use a window size of 20 ms for all computations
and a 10 ms overlap between adjacent frames.

3. STATISTICAL TRACKING

Our statistical model for tracking multiple acoustic sources
includes selecting reliable channels, a statistical model for the
measurement error, a source dynamics model and a method of
computing the likelihood of a particular time frame from the
observed data. The last stage of the algorithm uses an HMM to
form continuous tracks for all active sources present in the scene.
The height of the peak in the normalized cross-correlation
function systematically decreases with the increase of noise level
and thus represents a measure of reliability. Therefore, a channel
c¢ is considered reliable and thus selected if the corresponding
peak height exceeds a threshold 6(c). The thresholds 6(c) are
estimated so that the majority of “clean” channels are selected,
where a clean channel is the one dominated by only one source,
i.e. the relative strength of the source with respect to the
interference is greater than a threshold R=0.8. We observe that
6(c) is alinearly decreasing function with respect to the CCF.

3.1 Measurement model

For each selected frequency channel, the measured ITD and IID
signal a specific source location. By studying the deviations of
the measurements from the reference values, we can derive the
probability of one selected channel supporting a location
hypothesis.

Consider channel ¢ and azimuth ¢ for which the ITD and

IID reference values are 7. (c,9) and I,.f(c,9). We denote
o = T —Tref (c,) , Where 7is the lag of the closest peak in the

cross-correlation function with respect to the reference value and
o =1- Iyer (c,9) , where [ is the computed 1ID.

Statistics of the deviations ¢; and ¢, in a particular
channel are collected for one-source and two-source scenarios

across various spatial configurations. We observe that the
histograms obtained are sharply centered at zero; therefore, we
model the distribution of the error measurement in channel c as a
combination of a Laplacian distribution and a uniform
distribution (see [6]):

Pe(61,62) == q)L(61; A1 (¢))L(62; A2(c)) + qU (61,62), (1)

where 0<g<1 is a weighting coefficient. L(d;4) is the
laplacian distribution with variance A and U is the uniform
distribution in the plausible range of é; ([ —A,A] step lags) and
L,44) .

2CCF(c)

The parameters A4;(c) and the weighting factor ¢ are

estimated independently for all frequency channels. We observe
that the variance for ¢; decreases abruptly across channels

é2 ([-20, 20] dB), where A = max(

whereas the trend for d, is slowly increasing. To obtain smooth
parameters across channels we use the following model:

Ai(c)=Ao + AL/ CCF(c), (2a)
A2(c) = By + By *CCF(c) , (2b)

The maximum likelihood method is then used to estimate
(A;, Bj, q) for the one-source and the two-source scenarios.

3.2 Dynamics model

In a practical multi-source tracking situation, the number of
sources currently active is generally unknown. In this work, we
assume a maximum of three sources and define the state space
consisting of eight subspaces as follows:

S=So Uiz, 3 USE)i jo.3USs, 3)

where So is the silent state, Sf is the set of states tracking the

i’th source, Sé’j is the set of states simultaneously tracking both

the i’th and the j’th source and S3 the set of states tracking all

three sources. A state is represented as a 3-dimensional vector
x =(¢1,¢2,¢3), where each dimension ¢; gives the azimuth

location or indicates that the source is silent.

Systems with Markovian transition probabilities provide a
standard statistical framework for dealing with multiple dynamic
models. Suppose that the state of the system x; at time 7 isin

the subspace Sy . Then the system is summarized by:
P(xic, Sk 1 X1-1,8k-1) = p(Sk | Se-1) p(x 1 xk1) @

where p(Si |Sk-1) are the transition probabilities between the
state subspaces and p(xj |xx—1) gives the temporal evolution

of the state vectors. Here, we assume that the objects move
independently of each other following a linear gaussian model:

P(@k | @r-1)=N(Pr,0), 5)
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where N is the Gaussian distribution with mean @ and variance
o = 2°. For slow moving targets, the predicted location @i is
obtained using a linear estimate backtracked from state xj
during a time period of maximum 150 ms.

3.3 Likelihood model

This section derives the conditional probability density
p(M,Clx), often referred to as the likelihood function, which
statistically describes what a single frame of measurements can
say about the joint state x of the objects to be tracked. Here, C is
the set of selected channels and M is the corresponding set of
ITD and IID measurements M = ({2¢},/c )cc -

First, we consider the conditional probability for one active
source, i.e. X€ (Sl"),-zlwg, p(M,Clg) where ¢ refers to the
hypothesized azimuth. For channel ¢, we compute the
measurement errors J1, 0, from the reference values Tref (C,9)
and I, (c,) as described previously. Then, the conditional

probability of a single channel with respect to the state x is
derived as follows [6]:

| pc(01,02), if channel cis selected
p({Tc}’IL‘I¢)_{qU(51,52), CISC ) (6)

where all the symbols are as described in Eq. 2 and Eq. 3 and the
parameters are estimated from one-source scenarios. Note that
background noise is assigned to an unreliable channel.

By combining the evidence from all the reliable channels,
we obtain the likelihood function for one single time frame. We
observe that assuming independence between channels results in
noisy distributions, and thus the conditional probability is
expressed as follows [6]:

N
P(M,C|¢’)=Kb1fnp({fc},1c|¢7) , @)
c=1

where b=25 is a smoothing factor, N=128 is the total number of
channels, and K is a normalization factor.
Next, we consider the likelihood for the multi-source

hypothesis, i.e. xe ((S;’j)i,j:l,..,f& UsS3), p(M,CH@r)k=1,..n)
where ¢ corresponds to the azimuth of the k’th source. Similar
to the one-source case, we compute the measurement deviations
é'lk and 55 from the reference values 7, (c,9r) and
Iver (c, @) for all n active sources (n=2,3). Observe that a

selected channel should signal only one source under the
assumption that only one speaker dominates a reliable channel.
Let ¢ be the strongest source in the current time frame. A
gating technique is applied to label the channels that belong to
the strongest source. Specifically, we label channel ¢ if both

‘511‘ < B A(c) and ‘55‘ < BAy(c) where [ =35 is the gate size.

Then the conditional probability for channel ¢, when assuming
¢ is stronger, is given by [6]:

qU(51 s 521 ), if channel ¢ not selected

De (511 , 55 ), if channel ¢ belongs to ¢

’ I —
pzehLe H@e)k) pc(52,522), if channel ¢ belongs to ¢, °

max( pe (51" ,5§ )), else
k

where all the parameters are derived for two-source scenarios.
Integration of the individual probabilities across all channels as
done in Eq. (7) gives the conditional probability
p’ (M ,C (i) ) for the current time frame assuming source ¢
is the strongest. Then, the likelihood function is computed as
follows:

pM.Cl(¢r))=Kay m}gxp'(M,ClP(((ﬁk)k)), ®)

where the maximization considers all the permutations P of the
set (@k)k=1,..,» and @, is used to adjust the relative strength

between the zero-, one-, two- and three-source hypothesis. After
training we fix a, to the following values: a; =0.0608 and

a3 =0.0907 .

Finally, we fix the probability of zero active source, i.e.
xe Sy,

p(M,Clx)=Kag, where ag=10"*. ©)

3.4 HMM-based source tracking

The state space and the time axis are discretized and the standard
Viterbi algorithm is employed to identify the optimal sequence
of states. The algorithm attempts to reconstruct the initial tracks
of the most probable sound sources in the scene where the
maximum number of sources is fixed to three. Consequently, the
decision of the system at every time frame includes the number
of currently active sources and their estimated locations.

The computational expense of HMM algorithms can be
reduced significantly by employing efficient implementations.
The original tracks are continuous and thus pruning has been
utilized to reduce the number of candidates to be examined for
the current state. Also, beam search has been employed to reduce
the state subspace considered in the evaluation of the current
time frame. Finally, a corpus of 10 speech signals from the
TIMIT database presented at a systematic set of spatial
configurations is used for parameter estimation and training for
the one-source and the two-source scenarios.

4. RESULTS

The performance of the tracking system presented in Section 3 is
illustrated for a series of multiple moving source configurations.
A pair of left and right signals is synthesized as described in
Section 2 for a linear motion with constant speed.

Figure 1A shows the result of tracking one male and two
female sources for a duration of 2.5 s. The sources move from
left to right in a linear motion with respect to the virtual listener
and with a constant speed of 1 m/s. The system is able to track
the three sources across time, and indicates when a source is not
active as long as it is not entirely masked by the interference.
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Figure 1. Tracking three moving sources. A. Continuous tracks obtained
by applying the model. The solid lines give the original trajectories
where a gap indicates a pause in the sentence. The ‘*’, ‘0’ and ‘+ tracks
correspond to the estimated tracks. B. Summarized cross-correlation
across time.
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Figure 2. Source tracking for two intersecting sources. The solid lines

give the original trajectories where a gap indicates a pause in the
sentence. The ‘+’ and ‘0’ tracks correspond to the estimated tracks.

For a comparison, we present in Fig. 1B the evolution of
the standard cross-correlogram which is similar in principle to
the generalized cross-correlation as used in [3]. Normalized
cross-correlations for individual channels are summed and the
results are shown for all time frames. Here the vertical axis
shows the time lag in the plausible range from —1 ms to 1 ms and
the darker regions correspond to stronger activities in the
summarized cross-correlation. This representation utilizes only
the ITD information and thus exhibits the multiple-peak
problem. For an anechoic situation, the strongest peak is usually
well correlated with the strongest source but the secondary peaks
can be misleading. In fact, peaks associated with true sources are
absent for considerable numbers of time frames. By combining
ITD and IID in a statistical model and employing a tracking
system, our model overcomes these problems.

A challenging task is shown in Fig. 2 where the two moving
sources intersect each other. This scenario is obtained for a male
speaker moving from left to right in front of the virtual listener
with speed 1 m/s and a female speaker moving from right to left
with the same speed. Our system is able to disambiguate the two
tracks in this example. In general, the system needs to
incorporate additional information to deal with intersecting
motion tracks, e.g. spectral continuity and pitch continuity.

Similar results have been obtained for a variety of other
configurations, including stationary sources.

5. CONCLUSION

We have proposed a new algorithm for tracking multiple moving
sound sources. Our model integrates reliable information across
time-frequency regions and imposes a continuity constraint
through an HMM. Although the current system does not
consider reverberation or complex motion trajectories, our
framework is very promising for those situations also. Our study
represents a first attempt to address auditory scene analysis with
moving sound sources.
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