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ABSTRACT 
 

This paper presents a novel method for tracking the azimuth 
locations of multiple active sources based on binaural 
processing. Binaural cues are strongly correlated with source 
locations for spectral regions dominated by only one source. 
Therefore, this approach integrates reliable information across 
different frequency channels to produce a likelihood function in 
the target space. Finally, a hidden Markov model (HMM) is 
employed for forming continuous tracks and detecting the 
number of active sources across time. Experimental results are 
presented for simulated multi-source scenarios. 
 

 
1. INTRODUCTION 

 
Computational auditory scene analysis aims at separation of 
multiple sound streams, such as speech, environmental noise, 
music, etc. The auditory system is able to segregate the target 
signal from the acoustic mixture using various cues, including 
pitch, onset time and location. Experiments with stationary 
sources under anechoic conditions show good separation results 
when accurate locations are given [1]. However, in a realistic 
environment source motion and head movement must be 
considered. The goal of this paper is to examine the use of 
acoustical information for multi-source tracking.  

Among the numerous tracking systems proposed, arrays of 
microphones have been shown to provide accurate results for 
locating sound sources in a number of scenarios [2][3]. When 
restricting the size of the array to only two sensors as humans 
have, the multi-source tracking problem becomes a challenging 
task and little has been attained in this respect. As a solution, 
fused visual and auditory information is generally used in this 
type of applications where the auditory stream helps mainly in 
resolving ambiguities during occlusions [4].  

We present a novel auditory tracking system based on 
binaural cues extracted from responses of a KEMAR dummy 
head that realistically simulates the filtering process of the head, 
torso and external ear. A typical approach for tracking 
applications is Bayesian inference [5]. We study a model that has 
been successfully applied to multi-pitch tracking under noisy 
conditions [6]. 

The rest of the paper is organized as follows: the next section 
describes auditory motion modeling. Section 3 contains the 
model description and provides details of the statistical model 
employed. Section 4 gives simulation results and the last section 
concludes this paper. 

2. MODELING AUDITORY MOTION 
 
For human audition, sound source localization is primarily 
achieved with the binaural cues, of interaural time differences 
(ITD) and interaural intensity differences (IID). In this paper, 
source localization refers to azimuth localization in the 
horizontal plane. Measurements and models of head-related 
transfer functions (HRTF) are the standard method for a realistic 
binaural synthesis. We utilize here a catalogue of HRTF 
measurements collected by Gardner and Martin from a KEMAR 
dummy head under anechoic conditions [7].  

For a moving sound, there are changes in ITD and IID that 
give velocity cues and enable the listener to perceive and track 
the source location. In addition, as the relative distance between 
the listener and the sound event changes there is a shift in 
frequency called the Doppler effect. For motions induced by 
human walking, however, the Doppler shift is negligible and 
thus not used in this study. 

   
2.1 Binaural simulation 

 
The transmission path for an HRTF measurement contains many 
subsystems, i.e. the loudspeaker, the microphone and the ear 
canal, that need to be compensated in order to obtain the desired 
response. Therefore, we use diffuse-field equalized HRTFs that 
eliminate all the factors that are not location-dependent. 

An attractive property of the HRTFs is that they are almost 
minimum-phase [8]. Therefore, a standard way of modeling 
HRTFs is to decompose the system into a cascade of a 
minimum-phase filter and a pure delay line that implements the 
ITD [9]. The motivation is that minimum-phase systems behave 
better than the raw measurements for interpolation both in the 
phase and the magnitude response. In addition, a minimum-
phase reconstruction of HRTF does not have perceptual 
alterations [10]. Here, the minimum-phase part is computed 
using the inverse Hilbert transform and the ITD is estimated as 
the mean of the excess phase in the range of interest from 80 Hz 
to 5 kHz.  

The input to the system is monaural recordings sampled at 
44.1 kHz. Binaural responses at the left and right eardrums are 
synthesized by filtering the signals with direction-dependent 
impulse responses );(, ϕnh RL , where ϕ is a time-varying 
azimuth. The database of HRTF measurements has a resolution 
of 5ο. Separate tables for the corresponding minimum-phase 
filters and time delays are computed and a simple two-way linear 
interpolation is applied. For an arbitrary direction of sound 
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incidence, the impulse response is reconstructed from the 
cascade of those two processes. 

 
2.2 Auditory periphery and binaural processing 
 
It is widely acknowledged that cochlear filtering can be modeled 
by a bandpass filterbank. The filterbank employed here consists 
of 128 fourth-order gammatone filters [11] with channel center 
frequencies (CCF) equally distributed on the ERB scale between 
80 Hz and 5 kHz. In addition, we adjust the gains of the 
gammatone filters in order to simulate the middle ear transfer 
function [12]. In the final step of the peripheral model, a simple 
model of hair cell transduction consists of half-wave rectification 
and a square root operation. 

For each frequency channel c, a normalized cross-
correlation function is computed in the plausible range of ITD 
from –1 ms to 1 ms. The lag cτ  ( 4444 <<− cτ ) of a peak in the 
cross-correlation function is a candidate for ITD estimation. At 
high frequencies where multiple peaks are present the set of all 
possible time lags }{ cτ  is considered, and this creates ambiguity 
in localization. We resolve this ambiguity by using IID 
information, which is given by the ratio of signal power at the 
two ears. We use a window size of 20 ms for all computations 
and a 10 ms overlap between adjacent frames. 
 

3.  STATISTICAL TRACKING 
 
Our statistical model for tracking multiple acoustic sources 
includes selecting reliable channels, a statistical model for the 
measurement error, a source dynamics model and a method of 
computing the likelihood of a particular time frame from the 
observed data. The last stage of the algorithm uses an HMM to 
form continuous tracks for all active sources present in the scene.  

The height of the peak in the normalized cross-correlation 
function systematically decreases with the increase of noise level 
and thus represents a measure of reliability. Therefore, a channel 
c is considered reliable and thus selected if the corresponding 
peak height exceeds a threshold )(cθ . The thresholds )(cθ  are 
estimated so that the majority of “clean” channels are selected, 
where a clean channel is the one dominated by only one source, 
i.e. the relative strength of the source with respect to the 
interference is greater than a threshold R=0.8. We observe that 

)(cθ  is a linearly decreasing function with respect to the CCF. 
 

3.1 Measurement model 
 

For each selected frequency channel, the measured ITD and IID 
signal a specific source location. By studying the deviations of 
the measurements from the reference values, we can derive the 
probability of one selected channel supporting a location 
hypothesis. 

Consider channel c and azimuth ϕ  for which the ITD and 
IID reference values are ),( ϕτ cref  and ),( ϕcIref . We denote 

),(1 ϕττδ cref−= , where τ is the lag of the closest peak in the 
cross-correlation function with respect to the reference value and 

),(2 ϕδ cII ref−= , where I is the computed IID. 

Statistics of the deviations 1δ  and 2δ  in a particular 
channel are collected for one-source and two-source scenarios 

across various spatial configurations. We observe that the 
histograms obtained are sharply centered at zero; therefore, we 
model the distribution of the error measurement in channel c as a 
combination of a Laplacian distribution and a uniform 
distribution (see [6]): 

 
),())(;())(;()1(),( 21221121 δδλδλδδδ qUcLcLqpc +−= ,   (1) 

 
where 10 << q  is a weighting coefficient. );( λδL  is the 
laplacian distribution with variance λ  and U is the uniform 
distribution in the plausible range of 1δ  ([ ∆∆− , ] step lags) and  

2δ  ([-20, 20] dB), where  )44,
)(2

max(
cCCF

Fs=∆ . 

The parameters )(ciλ and the weighting factor q are 
estimated independently for all frequency channels. We observe 
that the variance for 1δ  decreases abruptly across channels 
whereas the trend for 2δ  is slowly increasing. To obtain smooth 
parameters across channels we use the following model: 

 
)(/)( 101 cCCFAAc +=λ ,         (2a) 

)(*)( 102 cCCFBBc +=λ ,                                           (2b) 
 
The maximum likelihood method is then used to estimate 

( iA , iB , q) for the one-source and the two-source scenarios. 
 

3.2 Dynamics model 
 

In a practical multi-source tracking situation, the number of 
sources currently active is generally unknown. In this work, we 
assume a maximum of three sources and define the state space 
consisting of eight subspaces as follows: 

 

33,..,1,
,

23,..,110 )()( SSSSS ji
ji

i
i

��� === ,     (3) 

 

where 0S  is the silent state, iS1  is the set of states tracking the 

i’th source, jiS ,
2  is the set of states simultaneously tracking both 

the i’th  and  the j’th source and 3S  the set of states tracking all 
three sources. A state is represented as a 3-dimensional vector 

),,( 321 ϕϕϕ=x , where each dimension iϕ  gives the azimuth 
location or indicates that the source is silent.   

Systems with Markovian transition probabilities provide a 
standard statistical framework for dealing with multiple dynamic 
models. Suppose that the state of the system kx  at time kt  is in 
the subspace kS . Then the system is summarized by: 

 
)|()|(),|,( 1111 −−−− = kkkkkkkk pSSpSSp xxxx ,    (4) 

 
where )|( 1−kk SSp  are the transition probabilities between the 
state subspaces and )|( 1−kkp xx  gives the temporal evolution 
of the state vectors. Here, we assume that the objects move 
independently of each other following a linear gaussian model:  
 

),ˆ()|( 1 σϕϕϕ kkk Np =− ,      (5) 
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where N is the Gaussian distribution with mean kϕ̂  and variance 

σ = 2ο. For slow moving targets, the predicted location kϕ̂  is 
obtained using a linear estimate backtracked from state kx  
during a time period of maximum 150 ms.  
 
3.3 Likelihood model  

 
This section derives the conditional probability density 

)|,( xCMp , often referred to as the likelihood function, which 
statistically describes what a single frame of measurements can 
say about the joint state x of the objects to be tracked. Here, C is 
the set of selected channels and M is the corresponding set of 
ITD and IID measurements ( ) Cccc IM ∈= },{τ . 

First, we consider the conditional probability for one active 

source, i.e. 3,..,11 )( =∈ i
iSx , )|,( ϕCMp  where ϕ  refers to the 

hypothesized azimuth. For channel c, we compute the 
measurement errors 1δ , 2δ  from the reference values ),( ϕτ cref  

and ),( ϕcIref  as described previously. Then, the conditional 

probability of a single channel with respect to the state x is 
derived as follows [6]: 

 



=

else   ),,(
selected is  channel if     ),,()|},({

21

21
δδ
δδϕτ

qU
cpIp c

cc ,  (6) 

 
where all the symbols are as described in Eq. 2 and Eq. 3 and the 
parameters are estimated from one-source scenarios. Note that 
background noise is assigned to an unreliable channel. 

By combining the evidence from all the reliable channels, 
we obtain the likelihood function for one single time frame. We 
observe that assuming independence between channels results in 
noisy distributions, and thus the conditional probability is 
expressed as follows [6]: 

 

b
N

c
cc IpKCMp ∏

=
=

1
)|},({)|,( ϕτϕ ,     (7) 

 
where b=25 is a smoothing factor, N=128 is the total number of 
channels, and K is a normalization factor.  

Next, we consider the likelihood for the multi-source 

hypothesis, i.e. ))(( 33,..,1,
,

2 SS ji
ji

�=∈x , ))(|,( ,..,1 nkkCMp =ϕ  

where kϕ  corresponds to the azimuth of the k’ th source. Similar 
to the one-source case, we compute the measurement deviations 

k
1δ  and k

2δ  from the reference values ),( kref c ϕτ  and 

),( kref cI ϕ  for all n active sources )3,2( =n . Observe that a 
selected channel should signal only one source under the 
assumption that only one speaker dominates a reliable channel. 

Let 1ϕ  be the strongest source in the current time frame. A 
gating technique is applied to label the channels that belong to 
the strongest source. Specifically, we label channel c if both 

)(1
1
1 cλβδ <  and )(2

1
2 cλβδ <  where 5=β  is the gate size. 

Then the conditional probability for channel c, when assuming 
1ϕ  is stronger, is given by [6]: 
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where all the parameters are derived for two-source scenarios. 
Integration of the individual probabilities across all channels as 
done in Eq. (7) gives the conditional probability 

))(|,( kkCMp ϕ′ for the current time frame assuming source 1ϕ  
is the strongest. Then, the likelihood function is computed as 
follows: 
 

)))((|,(max))(|,( kk
P

nkk PCMpKCMp ϕαϕ ′= ,    (8) 

 
where the maximization considers all the permutations P of the 
set nkk ,..,1)( =ϕ  and nα  is used to adjust the relative strength 
between the zero-, one-, two- and three-source hypothesis. After 
training we fix nα  to the following values: 0608.02 =α  and 

0907.03 =α . 
Finally, we fix the probability of zero active source, i.e. 
0S∈x ,  

 

0)|,( αKCMp =x ,    where 24
0 10−=α .                    (9) 

 
3.4 HMM-based source tracking 

 
The state space and the time axis are discretized and the standard 
Viterbi algorithm is employed to identify the optimal sequence 
of states. The algorithm attempts to reconstruct the initial tracks 
of the most probable sound sources in the scene where the 
maximum number of sources is fixed to three. Consequently, the 
decision of the system at every time frame includes the number 
of currently active sources and their estimated locations.  

The computational expense of HMM algorithms can be 
reduced significantly by employing efficient implementations.  
The original tracks are continuous and thus pruning has been 
utilized to reduce the number of candidates to be examined for 
the current state. Also, beam search has been employed to reduce 
the state subspace considered in the evaluation of the current 
time frame. Finally, a corpus of 10 speech signals from the 
TIMIT database presented at a systematic set of spatial 
configurations is used for parameter estimation and training for 
the one-source and the two-source scenarios.  
 

4. RESULTS 
 
The performance of the tracking system presented in Section 3 is 
illustrated for a series of multiple moving source configurations. 
A pair of left and right signals is synthesized as described in 
Section 2 for a linear motion with constant speed. 

Figure 1A shows the result of tracking one male and two 
female sources for a duration of 2.5 s. The sources move from 
left to right in a linear motion with respect to the virtual listener 
and with a constant speed of 1 m/s. The system is able to track 
the three sources across time, and indicates when a source is not 
active as long as it is not entirely masked by the  interference. 
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Figure 1. Tracking three moving sources. A. Continuous tracks obtained 
by applying the model. The solid lines give the original trajectories 
where a gap indicates a pause in the sentence. The ‘*’ , ‘o’  and ‘+’  tracks 
correspond to the estimated tracks. B. Summarized cross-correlation 
across time.  
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Figure 2. Source tracking for two intersecting sources. The solid lines 
give the original trajectories where a gap indicates a pause in the 
sentence. The ‘+’  and ‘o’  tracks correspond to the estimated tracks. 
 

For a comparison, we present in Fig. 1B the evolution of 
the standard cross-correlogram which is similar in principle to 
the generalized cross-correlation as used in [3]. Normalized 
cross-correlations for individual channels are summed and the 
results are shown for all time frames. Here the vertical axis 
shows the time lag in the plausible range from –1 ms to 1 ms and 
the darker regions correspond to stronger activities in the 
summarized cross-correlation. This representation utilizes only 
the ITD information and thus exhibits the multiple-peak 
problem. For an anechoic situation, the strongest peak is usually 
well correlated with the strongest source but the secondary peaks 
can be misleading. In fact, peaks associated with true sources are 
absent for considerable numbers of time frames. By combining 
ITD and IID in a statistical model and employing a tracking 
system, our model overcomes these problems. 

A challenging task is shown in Fig. 2 where the two moving 
sources intersect each other. This scenario is obtained for a male 
speaker moving from left to right in front of the virtual listener 
with speed 1 m/s and a female speaker moving from right to left 
with the same speed. Our system is able to disambiguate the two 
tracks in this example. In general, the system needs to 
incorporate additional information to deal with intersecting 
motion tracks, e.g. spectral continuity and pitch continuity. 

Similar results have been obtained for a variety of other 
configurations, including stationary sources. 
 

5. CONCLUSION 
 

We have proposed a new algorithm for tracking multiple moving 
sound sources. Our model integrates reliable information across 
time-frequency regions and imposes a continuity constraint 
through an HMM. Although the current system does not 
consider reverberation or complex motion trajectories, our 
framework is very promising for those situations also. Our study 
represents a first attempt to address auditory scene analysis with 
moving sound sources. 
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