MULTI-STEP INFORMATION-DIRECTED SENSOR QUERYING IN DISTRIBUTED
SENSOR NETWORKS

Juan Liu
Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

ABSTRACT

Sensor tasking is essential to many sensing applications in resource-
constrained wireless ad hoc sensor networks. In this paper, we
present a multi-step lookahead algorithm for sensor selection and
information routing. The algorithm is based on the information-
driven sensor querying (IDSQ) that uses mutual information as a
utility meature for potential information contribution of individ-
ual sensors, and extend it to prediction of information gain over a
finite horizon while balancing cost such as the number of commu-
nication hops. Simulation results on target tracking problems have
shown that the multi-step lookahead algorithm significantly im-
proves the tracking performance compared to the original greedy
algorithm, when “sensor holes” are present in a sensor network.

1. INTRODUCTION

The study of distributed sensor networks is an emerging, in-
terdisciplinary research area, with contributions from fields
such as signal processing, communication, distributed al-
gorithms, and MEMS sensor technology. Recently, there
has been an increasing interest in using distributed sensor
networks for large-scale sensing applications such as envi-
ronmental monitoring, security surveillance, and battlefield
awareness [1]. The primary reason is the flexibility and
scalability of ad hoc sensor networks. Unlike traditional
sensor arrays, a distributed sensor network can be flexibly
deployed in an area where there is no a priori sensing in-
frastructure. By distributing computation over the network
and invoking sensor collaboration within a local region, a
distributed sensor network is more scalable than traditional
centralized sensor array processing systems.

The sensor nodes in a large-scale sensor network are of-
ten battery-operated and bandwidth-limited. A major chal-
lenge in sensor network design is to optimize performance
under various resource constraints. It becomes critical to
carefully select the embedded sensor nodes that participate
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in the sensor collaboration, balancing the potential contri-
bution of each sensor against its resource consumption or
potential utility of other user. This is especially importantin
dense networks, where many measurements may be highly
redundant.

Several approaches to sensor collaboration have been
proposed in the sensor network literature. For example,
Brooks et al. described a prediction-based sensor collab-
oration that uses estimation of target velocities to activate
regions of sensors in the direction of movement [2]. This
heuristic method provides a rough estimate of the relevance
of nodes for the tracking task in the immediate neighbor-
hood. Zhao et al. [3, 4] introduced the more general concept
of information-driven sensor querying (IDSQ). The idea is
to quantify information gain with measures such as Ma-
hanolobis distance, Fisher information, or estimation en-
tropy, and use the measured information gain to guide sen-
sor selection and information routing. The sensor with the
highest information gain is activated to participate in the
collaboration. A greedy version of the IDSQ method suf-
fers from getting trapped at local maxima when a sensor
network contains “sensor holes”. In this paper, we present
a multi-step lookahead algorithm for IDSQ that uses more
global knowledge of information gain to guide the sensor
selection and routing.

2. INFORMATION-DIRECTED SENSOR
COLLABORATION

While the idea of information-directed sensor collaboration
applies to general sensing problems using wireless sensor
networks, here we illustrate the sensor collaboration in the
context of target tracking.

Consider the problem of tracking a target in a 2D re-
gion. The goal is to estimate the target location z(*) based
on sensor measurements up to time ¢, denoted as
2 = {20 M ... 2"} using a set of spatially dis-
tributed sensors. We follow the IDSQ framework [3, 4] in
which sensors are activated based on their utility and cost.
Zhao et al. discuss IDSQ in conjunction with a leader-based
tracking scheme, where at any time only one sensor, called
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the leader node, is active, while the rest of the network is
idle. The leader node combines its measurement with the
previous estimation to produce a posterior belief of the tar-
get state p(z®]2(®)), using a sequential Bayesian estima-
tion algorithm. Based on this belief, the leader selects a
sensor with the best predicted information from those that
are one hop away, and send the current belief to that sensor.
The original leader goes back to sleep, and the new leader
which receives the belief repeats the process of sensing, es-
timation, and leader selection. The leader-based selective
sensor activation scheme has several advantages. It pro-
longs network lifetime and lowers probability of detection
by turning off unnecessary sensors. It allows a network to
support multiple concurrent user operations by leaving un-
used sensors available for other sensing tasks.

We use mutual information as a metric for quantifying
information contribution from individual sensors. Mutual
information is calculated based on statistical observation
models, and provides a common ground for comparing dif-
ferent type of sensors. Therefore, it is suitable for heteroge-
neous sensor network systems and can be easily combined
with statistical information fusion methods. Furthermore,
it is applicable to models with arbitrary probability density
functions (pdf) and is not restricted to Gaussian models.

The mutual information between two random variables
U and V' with a joint probability density function p(u, v) is
defined as

I(U;V) = Epu) [IOgi
= D(p(ulv)|[p(v)),

where D(+||-) is the relative entropy between two distribu-
tions, also known as the Kullback-Leibler divergence [5]. It
indicates how much information V' conveys about U. From
a data compression perspective, it measures the savings in
bits of encoding U if V is already known. In classification
and estimation problems, mutual information can be used
to establish performance bounds.

Using the information metric, a leader selects the most
“informative” sensor according to

kipsg = a‘rgineaﬁ)/d(X(tJrl);Zl(cHl)'ﬁ — ﬁ)) (1)

where A/ denotes the set of sensors the leader node can talk
to, and p(z®|2(®)) is the current belief state. Essentially,
this criterion selects a sensor whose measurement z,(f“)
combined with the current measurement history z(), would
provide the greatest amount of information about the target
location z(*+1), The mutual information can be interpreted

as Kullback-Leibler divergence between p(z(+1)[z{"+1))
and p(z(t+1)|2(®)), the belief after and before applying the
new measurement z,(f“), respectively. Therefore, this cri-
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Fig. 1. An example of routing |n the presence of a sensor hole.

terion favors the sensor which on average gives the greatest
change to the current belief.

3. PROBLEMSOF GREEDY IDSQ

The sensor selection criterion (1) is greedy: the leader se-
lects among its neighbors the most “informative” sensor for
the next step. While it is highly efficient and uses no global
knowledge, the greedy algorithm may get stuck in local in-
formation maxima.

Consider the following sensor network example, as plot-
ted in Fig. 1, where circles denote sensor nodes and edges
one-hop communication links. Neighbor nodes are those
that are one-hop away in the graph, e.g., nodes B and C are
neighbors of node A. Since the problem with the greedy
algorithm is independent of the choice of information mea-
sure, we use the simpler metric of inverse of Euclidean dis-
tance between a sensor and the target. The closer a sensor
is from the target, the more informative it is in this metric.
Consider the case that the target moves along the dashed
line between A and B. Attime ¢ = 0, node A is the leader,
and selects a sensor to query among its neighbors B and C.
Sensor B has a higher information gain and therefore be-
comes the leader for time ¢ = 1. B then selects A since it
is its most informative neighbor. The sensor handoff keeps
going back and forth between nodes A and B, while the
target moves away. The leadership never gets to nodes E,
F, or G, who might be closer to the target as it moves up.
The culprit in this case is the “sensor hole” the target went
through. In general, inhomogeneity in sensor layout can
cause problems for the greedy algorithm due to its lack of
knowledge beyond the immediate neighborhood.

4. MULTI-STEP LOOKAHEAD IDSQ

The above example demonstrates that locally optimal choice
of sensors can be detrimental to overall optimality of track-
ing. To alleviate this problem, we propose a multi-step sen-
sor selection algorithm for IDSQ that optimizes the sen-
sor choice based on a prediction of information gain over a
lookahead horizon. Instead of selecting a single sensor as
in (1), we find a path in the network along which the sen-
sors maximize the accumulated information gain. The path
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length, denoted by M, is the number of lookahead steps and
a design parameter. In general, M should be large enough
to guide the sensor selection around sensor holes, but not
too large to make the computational cost prohibitive.

In general, information gain obtained by incorporating
the readings of multiple sensors is upper-bounded by the
sum of information gains of individually incorporating each
sensor measurement, i.e.,

(X521, Z0,+,2k) < Y I(X5Z). (2

k=1, K
The exact computation of I(X; Zy, Zs,-- -, Zk) involves
the high-dimensional pdf p(z, 21, 22, - - -, zx) and is expen-

sive. For computational efficiency, we use the upper bound
> 1 I(X; Zy) as the objective function to maximize.

With this objective function, the multi-step lookahead
algorithm can be stated as follows. Given a M-hop neigh-
borhood of a node, compute a path of length A or shorter
with maximum accumulated gain 3", I(X; Z) along the
path. This problem is combinatorial, since the information
gain one can collect at a node depends on whether the node
has been visited earlier on the path. Revisiting a node does
not bring in new measurement, hence the information gain
is zero. The optimal solution to the path-finding problem
has an exponential complexity. One needs to enumerate all
paths up to length A/ and selects the best one.

We propose a near-optimal path-finding algorithm with
a much lower complexity, called the min-hop algorithm.
The algorithm first selects the destination node as the node
within its M -hop neighborhood with the highest informa-
tion gain. Let m be the minimum number of hops from the
current leader to the destination. The algorithm then con-
siders all paths from the source to the destination with m
hops (hence the algorithms is called min-hop), and selects
the path whose accumulated gain is the greatest. The rea-
son for considering only the minimum hop paths is that the
information gain is calculated based on the current belief,
which becomes less accurate as time advances. The first
node along the selected path becomes the leader for the next
iteration, and the entire process of path-finding repeats.

Finding the minimum hop path to a destination with
maximum accumulated information is simple. The follow-
ing trick converts the maximum information gain problem
into a standard shortest-path problem, which can be solved
efficiently using Dijkstra’s algorithm [6], with computa-
tional complexity O(N log N + E), where N is the total
number of nodes in the local graph, and E is the number
of edges. The conversion is designed as follows: for each
node 4, we assign to each edge going into the node the cost
of L — u;, where L is some large number and u; is the in-
formation utility value at node 4. Fig. 2 shows an example
of local neighborhood before and after the conversion. The
information gain of each node is marked next to the node in

1
(@ (b)
Fig. 2. (a) local neighborhood of the current leader A; (b) the
converted graph for shortest-path algorithm.

Fig. 2a. The cost of edges are marked in Fig. 2b. The short-
est path in terms of accumulated edge cost in the converted
graph is the same as the path with maximum accumulated
information gain. This is easy to see: paths with minimum
number of hops wins over longer paths since L is large, and
all min-hops have the same number of hops, hence the one
with the maximum gain wins. To ensure the correctness of
this algorithm, we let L > E - 440, Where u,,q, is the
maximum information gain in the local neighborhood.

The min-hop algorithm reduces computation by con-
sidering only a subset of the paths. It finds the optimal
information gain path among a family of paths with min-
imum hop length from the current leader to the node with
maximum information value. The selected path provides
a good tradeoff between information gain and communica-
tion cost. Strictly speaking, it is suboptimal. For example,
in Fig. 2a, the maximum information gain path from A to
E is ABCE, with accumulated gain of 7. The min-hop al-
gorithm returns the path AD E, with accumulated gain of 5.
Clearly, the algorithm trades optimality with computational
complexity.

5. SSIMULATION RESULTS

Simulations for a tracking scenario were carried out to vali-
date and characterize the performance of the proposed multi-
step lookahead algorithm. The sensor network used con-
sists of two types of sensors, acoustic amplitude sensors and
direction-of-arrival (DOA) sensors. The acoustic amplitude
sensors output sound amplitude measured at each micro-
phone, and estimate the distance to a target based on the
physics of sound attenuation. The DOA sensors are small
microphone arrays. Using beamforming techniques, they
determine the direction where the sound comes from, i.e.,
the bearing of the target. The detailed description of these
two types of sensors can be found in [7].

In the simulation, the domain where sensors are laid
down is a 225x375 m? region. The sensor layout is gen-
erated as follows (see Fig. 3). First, a uniform grid of 15
rows and 6 columns is generated to evenly cover the region.
A sensor hole is created by removing the grid points with
rows 5-6 and columns 2-5, assuming lower-left corner is
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Fig. 3. Simulated sensor layout. The points marked with a “+”

denote amplitude sensors, ant the points marked with a square de-
note the DOA sensors.

the origin. The remaining grid is perturbed with a Gaussian
noise N (0, 25). The sensor network consists of 70% ampli-
tude sensors and 30% DOA sensors, randomly spread over
the sensor region. Each sensor can directly communicate to
eight nearest neighbors around itself, corresponding to the
3x3 subgrid centered at the sensor. The target travels from
south to north along a straight line in the middle of the field,
with a speed of v = 15 m/s. A sequential Bayesian estima-
tion algorithm, whose details can be found in [7], is used to
track the target location.

We compare the performance of a greedy algorithm and
a 3-step min-hop lookahead algorithm. The performance is
reported in Table 1. The results are averaged over 100 runs.
Due to the presence of sensor hole, the greedy algorithm
often loses track of the target. In our simulations, a track is
considered lost if by the time the vehicle reaches the north
end of the sensor field, the estimate of target location of
the last five steps is on average more than 60 meters away
from the true target location. By this standard, in 93% of
the simulated runs, the greedy IDSQ algorithm loses track,
and the 3-step min-hop lookahead loses track in only 19%
of the runs. The improvement is significant. Also of in-
terest is the mean-squared error (MSE) and the variance of
the belief state p(z(|2()) for the “good” runs in which
the track is not lost. MSE measures the tracking accuracy,
and the variance shows the compactness (hence the confi-
dence) of the belief. These statistics are also shown in Ta-
ble 1. The numbers are averaged over 100 runs and all time
steps. Note that the MSE using the greedy IDSQ algorithm
is twice higher than using the 3-step min-hop algorithm, in-
dicating that even the greedy algorithm did recover from
the sensor hole and keep track of the target, the recovery is
slow, causing the average MSE to be high. From the results
we can see that the 3-step min-hop algorithm is much more
robust against the presence of sensor holes.

Target loss || statistics of good runs
prob. MSE variance
greedy IDSQ 93% 23.61 261.7
3-step min-hop 19% 11.95 281.9

Table 1. Simulation results: tracking performance averaged over
all tracking steps and 100 runs.

6. DISCUSSIONS

This paper addresses the important problem of jointly opti-
mizing for estimation quality and information routing cost
in ad hoc sensor networks. A sensor network is typically
designed for one or more sensing and information gather-
ing tasks. Routing algorithms that minimize communica-
tion cost alone may find information poor paths.

We have presented an information-based optimization
technique, the multi-step lookahead IDSQ algorithm, that
maximizes information utility for a sensing task and at the
same time balances with resource usage. Simulation results
have shown that the technique can significantly improve es-
timation quality for a target tracking problem in the pres-
ence of sensor holes in the network.

In the formulation we presented, the objective function
is optimized with respect to the upper bound of the infor-
mation gain along a path. Hence, the resulting paths are not
strictly optimal, but are close to the optimal ones when the
upper bound is tight, i.e., the measurement at each sensor is
as dependent of each other as possible. As mentioned ear-
lier, solving the optimization problem with mutually depen-
dent measurements is computationally prohibitive. Finding
other efficient approximate solutions remains as a future re-
search topic.
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