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ABSTRACT

This paper addresses the problem of coherent/fully cor-
related source localization using vector sensor arrays. A
novel method for “decorrelating” the incident signals is pre-
sented. The method is based on vector sensor smoothing
(VSS) and enables the use of eigenstructure-based tech-
niques, which require uncorrelated or partially correlated
signals. The method is implemented as a preprocessing
stage before applying eigenstructure-based techniques, such
as MUSIC. The performance of the proposed VSS prepro-
cessing combined with MUSIC is evaluated and it is shown
that it asymptotically achieves the Cramer-Rao bound.

1. INTRODUCTION

Vector sensors enable estimation of the angle of arrival and
polarization of impinging electromagnetic waves with arbi-
trary polarization. In the last decade, many array process-
ing techniques for source localization and polarization esti-
mation using vector sensors have been developed. Nehorai
and Paldi [1], [2] developed the Cramer-Rao bound (CRB)
for this problem and the vector cross-product direction-of-
arrival (DOA) estimator.

Eigenstructure-based source localization techniques, such

as ESPRIT and MUSIC using vector sensors have been ex-
tensively investigated. Li [3], applied the ESPRIT algo-
rithm to a vector sensor array. ESPRIT-based direction
finding algorithms using vector sensors have been further
investigated in several papers [4], [5]. MUSIC-based al-
gorithms for this problem have been applied in [6]. These
techniques yield high-resolution and asymptotically efficient
estimates in case of uncorrelated or partially correlated sig-
nals. However, since these techniques assume non-singular
signal correlation matrix, they encounter difficulties in cases
of coherent /fully correlated signals like in multipath scenar-
ios.

In order to “decorrelate” the signals in the data co-
variance matrix, Evans et al. [7] proposed a preprocessing
technique referred to as spatial smoothing. The drawback
of this approach is the reduction of the effective array aper-
ture length, resulting in lower resolution and accuracy. An
alternative spatial averaging method is redundancy averag-
ing [8]. In [9], it is shown that this preprocessing method
induces bias in the DOA estimates.

In this paper, a novel preprocessing method is proposed
to remove the singularity in the signal correlation matrix
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in scenarios with fully correlated sources. The method is
based on Vector Sensor Smoothing (VSS), which enables
the use of eigenstructure-based algorithms, such as MUSIC
and ESPRIT for DOA estimation in these scenarios.

This paper is organized as follows. Section 2 describes
the measurement model using a vector sensor array. Sec-
tion 3 presents the proposed VSS method as a preprocess-
ing stage for eigenstructure-based source localization. The
performance of the proposed algorithms is evaluated via
computer simulation and described in section 4. Section 5
summarizes our conclusions.

2. PROBLEM FORMULATION AND
MODELING

Consider a vector sensor containing 3 electric and 3 mag-
netic orthogonal sensors, azimuthally rotated by an angle
d, as depicted in Fig. 1.

X.Y'.Z' - Element

X,Y,Z - Array

Figure 1: Vector sensor geometry

The spatial response in matrix notation of the vector
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sensor for the particular case, 6 = 0, can be expressed by
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where w denotes the ratio between the induced voltage in
an electric sensor to the corresponding induced voltage in a
magnetic sensor. The polarization vector, p, is determined
by two real parameters, v and 7: ps = sinye’” and py =
cos~y. In general, a vector sensor may contain part of the
6 sensor shown in Fig. 1, and therefore the corresponding
spatial response vector size is given by 1 < L < 6.

For the general case of a 3D array with IV vector sensors,
the spatial response in matrix notation of the array vector
sensors is expressed by

g(0,6,p) = a(0,¢) @ go(0,¢,p) = [a(,6) @ A(6,9)]p
F(6.9)

2)
where ® denotes the Kronecker product. The size of the
vector q(6, ¢) is N x 1 and its elements represent the phase
delay associated with each vector sensor in the array due
to its relative location for an incident plane wave from the
direction (6, ¢):

Qn(97 ¢) — ejko[z" sin 6 cos ¢4y, sin @ sin ¢+z,, cos 6]7 n= 17 . N
3)
and kg is the wavenumber in the medium.

Consider the scenario of M signals, impinging on the
array from directions (6, ¢ ) and polarization vectors pm,
where m = 1,---, M. Then, the spatial response of the
array to the mth signal is denoted by g(0:m, ¢m,pPm), and
the data model is given by

M
Ye = ZF(Qm;QSm)pmSmk“‘nk, k=1, K, (4)

m=1

where K is the number of independent samples collected by
the array and ny, represents the kth sample of the additive
noise and interference vector.

The measurement and noise vectors, yx and ny are each
of size LN, the matrix F (0, ¢n) is of size LN x 2 whose
columns denote the spatial transfer functions for both polar-
ization components of the mth signal, and p., is a complex
vector of size 2 describing the corresponding signal polar-
ization state.

We assume that the noise vector, {ng}f—,, is an ii.d.
sequence with zero-mean, complex Gaussian distribution,
ny ~ CN(0,R,) , and independent of the signals. The
signals samples, s, are assumed to be unknown deter-
ministic. In case of fully correlated signals, they can be
decomposed as Smk = pmSk, m=1,--- M k=1,--- | K
, where p,,, denotes the relative amplitude and phase of the

mth signal. Thus, Eq. (4) can be rewritten in the form:

M
Y = ZF(GM7¢M)pMNm5k+nk: k=1,--- K. (5)
m=1 C

The unknown parameters space can now be reduced to the
source directions {.m, ¢m }H—1, the modified signal polar-

ization vector, {¢, }2/_,, and the signal s = (s1,--,8x)7
The problem addressed in this paper is to estimate the
directions of arrival, (0, ¢), while the signal vector s and the
vector of the modified signal polarizations of the M arrivals,
(¢1,--+,Cm), are unknown complex vector parameters.

3. THE VECTOR SENSOR SMOOTHING (VSS)
ALGORITHM

The eigenstructure-based techniques for source localization
such as MUSIC, rely on identification of the signal and noise
subspaces. In the presence of fully correlated signals the di-
mension of the signal subspace is smaller than the number
of signals;, M, and therefore, the signal subspace does not
span the M-dimensional subspace of the spatial transfer
functions, g(61, ¢1,p1),- -, 8(0nm, dr, par). In this case, it
is required to employ the information on the structure of the
spatial transfer function, g(6, ¢, p), in order to determine
its subspace. Spatial smoothing [7], redundancy averaging
[8] and forward-backward averaging techniques utilize the
information on the structure of the spatial transfer function
in order to estimate this subspace or part of it. The defi-
ciency of the spatial smoothing method is the reduction of
the effective array aperture length resulting in lower reso-
lution and accuracy, while the deficiency of the redundancy
averaging method is that its estimation errors bias does not
vanish asymptotically for large number of measurements. In
addition, both approaches are limited to the case of a linear
equally spaced (LES) sensor array with far-field approxima-
tion. The forward-backward averaging method assumes a
symmetric array, far-field approximation and unequal signal
phases at the center of the array.

In the proposed method, the vector sensor information
is used in order to determine the subspace spanned by the
steering vectors q(61, ¢1), - - -, a(@r, dar), which enables es-
timation of direction of arrivals using eigenstructure-based
methods, such as MUSIC. This objective can be obtained
by Vector Sensor Smoothing (VSS) method as described
below.

By substitution of (2) into (5), the measurement model
at the array can be written in the form

i =Y [a(0m, dm) @ A6 $)] Cuse + 1. (6)

If we consider only the sensors of type | (1 < I < L),
then the corresponding measurement vector, y;x, can be
expressed as

M

ik = Y [an, b)) @ Ar(Bns ) st + 005 (7)

m=1
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which can be simplified to

M

Yik = Z A(Om, Om)ZmiSk + 0y (8)

m=1

where A;(0m, ¢m) is the lth row of the matrix A(fm, dm),
the scalar z,,,; = Ai(0m, ¢m)C,, denotes the response of the
Ith type sensor for DOA: 6,,, ¢m, and ny; stands for the
corresponding noise vector. This observation implies that
each type of sensor array measurements provides a different
linear combination of the vectors q(61, ¢1),- -, q(0rm, Par),
as it would be the case for uncorrelated signals. The in-
formation acquired by the L different sensor types helps to
obtain a measurement space in which the signals are not
fully correlated. We utilize this concept in order to span
the signal subspace, which is a necessary requirement of
the eigenstructure-based algorithms for source localization.
Eq. (8) can be rewritten in matrix form as

ylsz(07¢)zlsk+n”€ 7k=17"'7K7 l=17"'7L7 (9)

Q0,¢) 2 [a(B1, 1), -, a(Bu, dar)] and z 2

T . .
[211, -, 2m1] . Therefore, the covariance matrix of each
sensor type is given by

where

Ry, = E [yuyii] =0:Qzz Q" +Ray, I=1,---,L,

(10)
in which 02 = F|sg|> denotes the signal power and R,
denotes the corresponding noise covariance matrix. In this
problem, the M signals are fully correlated. Accordingly,
the signal covariance matrix of each sensor array type,
02Qz;zF QT is of rank one. In the proposed VSS method,
the covariance matrices {Ry l}le, are smoothed for the L
elements of the vector sensor. Consequently, the signal sub-
space is extended by averaging the L sensor type covariance
matrices, i.e.

L L
R = EZZ_:,RW = slQR.Q" + E;Rnl SN(SY

in which R, is defined as R, 2 % Zle zlle. The rank
of the smoothed signal covariance matrix is limited by
min(rank(R;), M). Algorithms such as MUSIC, ESPRIT,
etc, can use the corresponding sample covariance matrix,
R= = Zle Zszl YikYiy, with steering function, q(6, ¢)
for source localization.

For determination of the M-dimensional signal subspace,
it is required that M < min(L, N). This requirement can
be alleviated if one can use other methods for signal decor-
relation. For example, by applying the Forward-Backward
averaging, the maximum number of the fully correlated sig-
nals, which can be localized, is doubled.

The vector sensor array contains NL sensors and there-
fore N L receivers are required for data collection. However,
the VSS computes the smoothed covariance matrix by aver-
aging the N x N matrices {Ryl}le. In stationary scenarios,
these matrices can be calculated in different periods. This
implies that by an appropriate switching scheme, one can
use N receivers in order to collect the required data.

4. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed techniques for different vector sensor types and sce-
narios. Simulations are conducted with the MUSIC us-
ing the following preprocessing techniques: 1) No prepro-
cessing, 2) Forward-Backward averaging (FB), 3) VSS and
4) VSS combined with Forward-Backward averaging (VSS-
FB). The CRB for source localization using a vector sensor
array was derived in [2] and calculated for the scenarios
presented below.

For the simulations, a 12 elements linear array of vector
sensors along the y-axis with half-wavelength inter-element
spacing was chosen. Three types of vector sensors were
considered:

A - Vertical polarized sensor (see sensor no. 3 in Fig. 1)
- scalar sensor case. The VSS preprocessing cannot
be applied in this case.

B - Dual polarized vector sensor (see sensors no. 1 and 3
in Fig. 1 with § = 0°) - the vector sensors consist of
vertical and horizontal electric dipoles.

C - Quadrature polarized vector sensor (see sensors no.
1,2, 4 and 5 in Fig. 1 with § = 45°) - the vector sen-
sors consist of two electric dipoles and two magnetic
dipoles. The value of w, in Eq. (1) was chosen to
be 1. In the simulations we assumed that the sources
were located in the azimuth plane, § = 90°.

In the first scenario, two equal power, fully correlated
sources with DOA’s 4°,0° and elliptical polarizations, p1 =
(0.707e=7°" | 0.707), p2 = (0.707¢7*°",0.707) were consid-
ered. The phase difference between the two incident signals
at the origin was 110° such that ¢, = (0.707¢7%°° | 0.707¢711°°
¢y = (0.707¢7%°° 0.707). The number of samples taken
from the array was 100.

~—

Fig. 2 shows the root-mean-square error (RSME) of
the first source DOA estimation versus signal-to-noise ratio
(SNR). The VSS-MUSIC and VSS-FB-MUSIC achieve the
CRB, although at higher SNR’s. It can be seen that the
RMSE of the FB-MUSIC decreases as the SNR increases,
but it is not an efficient estimator even asymptotically. MU-
SIC with no preprocessing fails as expected in case of fully
correlated sources.

Fig. 3 presents the spatial spectrum of the MUSIC al-
gorithm for the three types of vector sensors, mentioned
above, and different methods of preprocessing. Eight equal
power, fully correlated sources with DOA’s —70°, —50°,
-30°, —10°, 0°, 20°, 40°, 60° and randomly chosen polar-
izations were considered. The SNR’s of all the signals were
15 dB and 100 samples were collected from the array. The
MUSIC and FB-MUSIC algorithms were applied to an ar-
ray with vector sensors of type A, while the VSS-MUSIC
and VSS-FB-MUSIC algorithms were applied to array of
vector sensors of types B and C. This figure shows that
only the VSS-FB-MUSIC with type C vector sensor array
is able to resolve the 8 fully correlated signals, while all
other methods fail.
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5. CONCLUSIONS

The problem of fully correlated source localization using
vector sensor array was addressed in this paper. A novel
preprocessing method based on vector sensor smoothing
(VSS) for “decorrelating” the signals was presented. This
method enables the use of eigenstructure-based techniques,
such as MUSIC, for fully correlated signals. In contrast
to other preprocessing methods, such as spatial smoothing,
forward-backward averaging and redundancy averaging, the
VSS method is not limited to any specific array structure.
By combining the VSS and forward-backward averaging,
one is able to resolve up to min(N —1,2L) coherent sources
where L is the number of dipoles in each of the N vector
sensors in the array. Simulations were carried out to evalu-
ate the performance of the proposed method combined with
MUSIC. The method was compared to forward-backward
averaging and CRB, and it was shown to be asymptotically
efficient.
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Figure 2: DOA estimation RMSE versus SNR.
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