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ABSTRACT

We address the problem of blind recovery of multiple sources
from their linear convolutivemixture with the cross-correlation
and constant modulus algorithm. The steady state mean-
squared error of this algorithm is first derived to justify the
proposal of a new cross-correlation and constant modulus
type algorithm for PAM-PSK type non-constant modulus
signals. Simulation studies are presented to support the im-
proved steady-state performance of the new algorithm.

1. INTRODUCTION

In a multi-input and multi-output (MIMO) system, one of
the challenging problems is to reconstruct multiple indepen-
dent and identically distributed (i.i.d.) sources from their
linear convolutive mixture. In spatial division multiple ac-
cess (SDMA) for use in multiuser telecommunications, for
example, a numberU of i.i.d. sources is transmitted through
linear channels, which can be modeled as FIR filters of or-
der L, and picked up by an array R of sensors to exploit
spatial diversity. A bank of space-time equalizers is em-
ployed to mitigate intersymbol interference (ISI) and in-
teruser interference (IUI). Among various adaptive algo-
rithms proposed, the cross-correlation and constant modu-
lus algorithm (CC-CMA) utilizes the underlying constant
modulus property of the transmitted signals and separates
different signals by introducing a decorrelation penalty within
the cost function, [1]. Provided that some mild conditions
regarding the channel and the sources are satisfied, the CC-
CMA algorithm exhibits mean convergence to a zero-forcing
solution corresponding to the retrieval of one of the multi-
ple sources with possible delay. However, the mean-squared
error (MSE) of the CC-CMA algorithm in the steady state
cannot be avoided due to the stochastic gradient used in
the equalizer update equation. In this paper, by applying a
similar approach as [2], the steady state MSE of the CC-
CMA algorithm is derived. As the analytical expression
indicates that the steady state MSE of the CC-CMA algo-
rithm increases when the signal constellation is not constant

modulus, a novel integration of the CC-CMA cost func-
tion together with a constellation match error penalty is pro-
posed for Pulse AmplitudeModulation - Phase Shift Keying
(PAM-PSK) type signals in a multiuser system.

2. THE CC-CMA ALGORITHM

At time instant k, the equalizer regressor is given by

x(k) = [xT1 (k) . . .x
T
R(k)]

T =4T s(k) (1)

where xj(k) = [xj(k) . . . xj(k − N)]T is the jth sensor
output vector, N is the order of the sub-equalizer, 4 is the
channel convolution matrix, s(k) = [s1(k) . . . s1(k −N −
L) . . . sU (k−N−L)]T is the composite source vector, [3].
The notations (·)H , (·)T and (·)∗ denote respectively hermi-
tian, transpose and complex conjugate. Representing the lth
space-time equalizer tap vector as wl(k), its output is writ-
ten as yl(k) = wT

l (k)x(k). Define hl (k) as the combined
channel and equalizer-l impulse response. The lth equalizer
output can also be written as yl(k) = hT

l (k)s(k). The CC-
CMA algorithm cost function for the lth equalizer is written
as

Jl(k) = E
n
(|yl(k)|2 −R2)

2
o
+γ

l−1X
m=1

N+LX
δ=−(N+L)

|rm,δ(k)|2

(2)
where E{(|yl(k)|2 − R2)

2} is the constant modulus cost,
R2 =

E{|s|4}
E{|s|2} is the so-called dispersion constant, γ ∈ R+

is the mixing parameter and rm,δ(k) = E {yl(k)y∗m(k − δ)}
is the cross-correlation between the lth equalizer and the
mth equalizer output with lag δ. For notational convenience,
we rewrite the cost function in eqn (2) as

Jl(k) = E
n
(|yl(k)|2 −R2)

2
o
+ rT (k)y0(k) (3)

where r(k) and y0(k) are vectors containing the elements of
rm,δ(k) and ym(k−δ)with different values in the indicesm
and δ, i.e., r(k) =

£
r1,−(N+L)(k) . . . . . . rl−1,(N+L)(k)
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and y0(k) = [y1(k +N + L) . . . . . . yl−1(k −N − L)]
T .

With the parameter λ ∈ (0, 1] controlling the length of the
effective data window in the estimation, the cross-correlaton
vector r(k) can be estimated by the following update equa-
tion.

br(k) = λbr(k − 1) + (1− λ)yl(k)y
0∗(k) (4)

With the stochastic gradient descent method, the lth equal-
izer update equation is given by

wl(k + 1) = wl(k) + µelo(k)x
∗(k) (5)

where the positive scalar µ is the step size parameter and
elo(k) =

³
R2 − |yl(k)|2

´
yl(k) − γ

2
brT (k)y0(k) is the in-

stantaneous error signal of the lth equalizer.

3. THE CC-CMA STEADY STATEMSE ANALYSIS

We note that additive channel noise is inevitable in all prac-
tical communication models and contributes to the steady
state MSE. However, in this study, as in [2], a noise-free en-
vironment is assumed since our focus is on the influence of
the stochastic gradient estimator of the CC-CMA algorithm
towards its steady state MSE performance. Without loss of
generality, we assume that the lth equalizer asymptotically
converges to the retrieval of the lth source with delay dl,
[4]. Define a priori error ela(k) for the lth equalizer at the
kth iteration as

ela(k) = sl(k − d)− yl(k) (6)

The expression of the steady state MSE for the lth equalizer
is shown in eqn (7) and this is the quantity that we wish to
determine.

MSE = lim
k→∞

E
n¯̄

ela(k)
¯̄2o (7)

Before continuing, the statistical properties of the cross-
correlation estimator brm,δ(k) after convergence of the lth
equalizer are studied.

(a) The expectation of the cross-correlation estimator is
equal to zero in the steady state, i.e., E {brm,δ(k)} = 0
Proof : With respect to eqn (4) and considering the fact that
lim
k→∞

E {brm,δ(k)} = E {brm,δ(k − 1)}, we obtain
E {brm,δ(k)} = E {yl(k)y∗m(k − δ)}. Two assumptions are
introduced. (1) In the steady state, the ith source signal
si(k) is independent of the estimation error signal at the jth
equalizer output, eja(k). This is actually a generalized as-
sumption of that given in [2], whereby the case i = j is
specified. Justification of this assumption is based upon the
fact that the estimation error of the equalizer-j, eja(k), is in-
sensitive to the ith source signal. (2) The estimation error

signals at the outputs of different equalizers are assumed un-
correlated, i.e., E

©
eia(k)e

j
a(k − δ)∗

ª
= 0 for i 6= j. This

assumption becomes realistic when the equalizer is long
enough so that its output in the steady state contains only
an estimate of the corresponding source but no significant
contribution from other interference sources. Under these
two assumptions, by substituting yi(k) with the expression
si(k−di)−eia(k) and utilizing the property of i.i.d. sources,
the result E {brm,δ(k)} = 0 is proven.

(b)When k→∞,E
n
|brm,δ(k)|2

o
≈ 1−λ

1+λ
E
n
|sl(k)|2 |sm(k)|2

o
Proof : Expand the quantity E

n
|brm,δ(k)|2

o
with respect to

eqn (4). In the resultant expansion, we assume the quantitybrm,δ(k−1) is uncorrelated with the equalizer output signals
y∗l (k) and ym(k− δ) when brm,δ(k− 1) converges to a con-
stant in the steady state. This assumption is justified when
the parameter λ is chosen to be close to unity, which means
a long data window is used in the cross-correlation estima-
tion, [3]. Using the result of E {brm,δ(k − 1)} = 0 and for
stationary sources lim

k→∞
E
n
|brm,δ(k)|2

o
= E

n
|brm,δ(k − 1)|2

o
,

the following approximation is achieved

E
n
|brm,δ(k)|2

o
=
1− λ

1 + λ
E
n
|sl(k)|2 |sm(k)|2

o
(8)

where the terms |sm(k − δ)|2 ¯̄ela(k)¯̄2 , |sl(k)|2 |ema (k − δ)|2
and

¯̄
ela(k)

¯̄2 |ema (k − δ)|2 are neglected for small values of¯̄
ela(k)

¯̄2 and |ema (k − δ)|2.

Employing an energy preservation approach, the following
relationship is derived in [2],

µ2E
n
kx(k)k2

o
E
n¯̄
elo(k)

¯̄2o
= µE

©
ela(k)

∗elo(k) + ela(k)e
l
o(k)

∗ª
(9)

Firstly consider µ2E
n¯̄
elo(k)

¯̄2o on the left hand side. Sub-
stituting the expression for elo(k), the expansion of µ2E

n¯̄
elo(k)

¯̄2o
can be written as the sum of four terms.

µ2E
n¯̄
elo(k)

¯̄2o
= termA+ termB+ termC+ termD (10)

where termA = µ2E

½¯̄̄³
R2 − |yl(k)|2

´
yl(k)

¯̄̄2¾
,

termB = γ2

4 µ
2Tr

©
E
©br(k)brH(k)ªE ©y0(k)y0(k)Hªª,

termC = γ
2µ

2E
n³
|yl(k)|2 −R2

´
y∗l (k)

¡brT (k)y0(k)¢o
and termD is the complex conjugate of termC. In [2], termA
is approximated by µ2E

n
|sl|2R22 − 2R2 |sl|4 + |sl|6

o
. To

derive the expression for termB, on the basis that br(k) tends
towards a vector with constant elements in the steady state,
which is achieved by using a sufficiently long data window,
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we assume that matrices br(k)brH(k) and y0(k)y0(k)H are
uncorrelated, [3]. Under this assumption, termB is written
as termB= γ2

4 µ
2Tr

©
E
©br(k)brH(k)ªE ©y0(k)y0(k)Hªª.

Using the result ofE
n
|brm,δ(k)|2

o
in eqn (8) and the statis-

tical independence of the sources, termB is approximated by
γ2

4 µ
2(2N+2L+1) 1−λ

1+λ
E
n
|sl(k)|2

oP
mE

n
|sm(k)|2

o2
,

where terms which contain
¯̄
elo(k)

¯̄2 are neglected for small
value of

¯̄
elo(k)

¯̄
. For termC, it is in fact the correlation be-

tween the instantaneous error signal contributed from the
constant modulus cost and the decorrelation penalty. Hence,
for small values of instantaneous error signals, termC can be
approximated by zero. Since termD is the complex conju-
gate of termC, it is also approximately zero.
Refer to the right hand side of eqn (9). As the value ofbr(k) approaches to a constant vector in the steady state, the

estimator of the cross-correlation between the current equal-
izer and the previous equalizer output br(k) is assumed to be
uncorrelated with the product of estimation error ela(k) and
the previous equalizer outputs y0(k) in the steady state. Jus-
tification is also based upon br(k) approaching a vector with
constant elements, when λ is large, which corresponds to a
long data window in the estimation of the cross-correlation
penalty. Since E {br(k)} = 0, the right hand side of eqn (9)
can bewritten as 2µE

n
ρ |sl(k)|2

¯̄
ela(k)

¯̄2 −R2
¯̄
ela(k)

¯̄2o,
where ρ equals to 3 for a real system and 2 when the system
is complex, [2]. Summarizing the above results and substi-
tuting the corresponding expression into eqn (9), the steady
state MSE of the CC-CMA algorithm, i.e., E

n¯̄
ela(k)

¯̄2o
when k→∞, is given by

MSE = µE
n
kx(k)k2

o
× (11)

E
n
|sl(k)|2R22 − 2R2 |sl(k)|4 + |sl(k)|6

o
+

γ2

4
1−λ
1+λ

(2N + 2L+ 1)E
n
|sl(k)|2

o
·P

mE
n
|sm(k)|2

o2


2
h
E
n
ρ |sl(k)|2 −R2

oi
When the mixing parameter γ = 0, eqn (11) agrees with the
results in [2] for the constant modulus algorithm. Eqn (11)
shows that the CC-CMA steady state MSE is affected by the
two-norm of the equalizer regressor E

n
kx(k)k2

o
, the step

size µ, the mixing parameter γ, the parameter λ, the num-
ber of i.i.d. sources and the source statistics. Large values
of µ and γ lead to high level of MSE. However, with small
µ, convergence rate reduces and there exists a lower bound
for the mixing parameter γ, [4]. For a system with a larger
number of sources, the steady state MSE increases, which is
reasonable since the adaptation of the current equalizer is re-
lated to the output of the previous equalizer due to the cross-

correlation penalty and the error of the previous equalizer
output would propagate to the equalizer at the later stage.

4. THEMODIFIED CC-CMA ALGORITHM

When compared with constant modulus sources, open eye
patterns are more difficult to achieve for non-constant mod-
ulus sources due to the high level of steady state MSE. To
overcome this problem, the cost function of the modified
CC-CMA algorithm (MCC-CMA) for the lth equalizer is
written as

Jnewl (k) = Jl (k) + γ2E {p(k)} (12)

where γ2 is an additional mixing parameter to combine a
constellation matched error penalty together with the con-
ventional cost function. The term E {p(k)} is newly intro-
duced to reduce the constellation matched error. Notice that
in the selection of the function p(k), the following factors
should be considered [5]. Firstly, p(k) should provide uni-
form performance over the information symbols. Secondly,
it should be symmetric around each member of the alpha-
bet. Thirdly, the maximum value should be reached at the
centre point between two consecutive symbols from the al-
phabet. The minimum values are zeros and only occur at the
constellation points. For a PAM-PSK signal constellation, a
similar constellation matched error function to that in [5] is
employed. That is,

p(k) = 1− sin2n
µ |yl(k)|

2d
π

¶
(13)

where 2d is the minimum distance between symbols and
n is a positive integer which gives some degree of free-
dom for the selection of p(k). Using the stochastic gradient
method to minimize the MCC-CMA cost function, the in-
stantaneous error signal is modified so that the update equa-
tion of the MCC-CMA algorithm at the kth iteration is writ-
ten as

elo(k)new =

 ³
R2 − |yl(k)|2

´
yl(k)− γ

2
brT (k)y0(k)+

γ2nπ

d|yl(k)| sin
2n−1

³
|yl(k)|
2d π

´
cos
³
|yl(k)|
2d π

´
yl(k)


The performance of the newly proposed modified MCC-
CMA algorithm is examined in the following simulation
section.

5. SIMULATIONS

Firstly we examine the steady state MSE of the CC-CMA
algorithm. A MIMO system with three i.i.d. sources and
four sensors is assumed. The order of the channel and the
sub-equalizer are respectively L = 1 and N = 2. We as-
sume a QPSK system with source alphabet

n
± 1√

2
± 1√

2
j
o
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Fig. 1. Comparison between CC-CMA and MCC-CMA.
(a) Residual error at EQ-1 (b) Residual error at EQ-2 (c)
Eye diagram of EQ-1 after 20000 samples, MCC-CMA (d)
Eye diagram of EQ-2 after 20000 samples, MCC-CMA (e)
Combined channel plus EQ-1 response (f) Combined chan-
nel plus EQ-2 response

for a constant modulus source. For the non-constant modu-
lus source, an 8-PAM-PSK constellation is employed, page
179 [6]. Fixing the parameters λ = 0.999 and γ = 4, the
experimental results are shown in Table (1). Fairly close
agreement between the experimental result and analysis can
be observed. Note that the step size µ for equalizer-1, 2,3
are respectively chosen as 3×10−3, 2×10−3 and 0.6×10−3
for the QPSK system and 3× 10−3, 5× 10−5 and 5× 10−5
for the 8-PAM-PSK system. Simulations indicate that the
steady state MSE for the non-constant modulus sources are
much larger than that of the constant modulus sources even
though much smaller step sizes are used. More simulation
results regarding varying value of λ, γ and µ are shown
in [3]. The performance of the MCC-CMA algorithm is
next examined. A two users and three sensors 16-PAM-
PSK system is assumed. Let L = N = 1 and set the
degree n = 1. The conventional CC-CMA algorithm and
the MCC-CMA algorithm are compared in Fig 1(a) and (b)
in terms of residual error. Analogous to the steady state
MSE, the residual error for the lth equalizer is defined as
khl(k)k22−max(|hl(k)|)2

max(|hl(k)|)2 and is an important measure in indi-
cating when the open eye condition can be achieved. With
the MCC-CMA algorithm, both equalizer-1 and equalizer-2
achieve open eye patterns within 20,000 data samples (com-
pared with more than 60000 data samples with the CC-
CMA algorithm). The combined channel plus equalizer-1
and equalizer-2 impulse responses are shown in Fig 1(e) and
(f). It can be observed that equalizer-1 retrieves source-1
with two delays and equalizer-2 reconstructs source-2 also
with two delays.

Equalizer-1 Equalizer-2 Equalizer-3
QPSK Ana. 0 4.72× 10−4 2.83× 10−4

Sim. 1.40× 10−20 0.33× 10−4 0.55× 10−4
8-PAM Ana. 0.95× 10−1 1.01× 10−1 0.64× 10−1
-PSK Sim. 2.21× 10−1 1.81× 10−1 1.24× 10−2

Table 1. MSE signal at the output of equalizer-1, 2, 3 for
the QPSK and 8-PAM-PSK systems

6. CONCLUSION

An analytical expression for the steady state MSE of the
CC-CMA algorithm is derived. Its value is proportional to
the step size µ and the quantity of E

n
kx(k)k2

o
and is fur-

thermore affected by the choice of the mixing parameter γ,
the parameter λ, which controls the window length within
the estimation of the cross-correlation penalty, the source
statistics and the number of users in the system. To reduce
the steady state MSE when the signal constellation is not
constant modulus, an addition constellation matched error
penalty is introduced, resulting in the new modified CC-
CMA algorithm. Simulation results support the analysis and
confirm the improvement of the MCC-CMA algorithm.
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