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Abstract—Space—time coding and modulation exploit the
presence of multiple transmit antennas to improve
performance on multipath radio channels. Thus far, most
work on space—time coding has assumed that perfect channel
estimates are available at the receiver. In certain situations,
however, it may be difficult or costly to estimate the channel
accurately. In this paper, we propose a new decoding algorithm
for full rate space-time block coding in frequency selective
channels, which accomplishes the decoding directly from the
over-sampled system outputs without the knowledge of the
channel. Combined with the unique feature of space-time
block coding, the subspace of the transmitted signal is
exploited to carry out the decoding. Monte Carlo simulations
give the performance comparison of this algorithm against
that with available channel information.

1. INTRODUCTION

Transmit diversity has gained much attention as a promising
technique for improving performance on multipath radio channels
[1]. Space-time block coding (STBC) discovered by Alamouti is a
remarkable transmit diversity scheme to resolve the issue of
decoding complexity [2]. An attractive property of space-time
block codes is that maximum-likelihood decoding can be
performed using only linear processing.

STBCs were originally designed for known flat fading
channels. The maximum-likelihood decoding of STBCs proposed
in [2] can not be applied directly to frequency-selective channels.
[3] and [4] deal with applications of STBCs to frequency-selective
channels assuming that perfect channel state information (CSI) is
estimated at the receiver. Channel estimation requires training
symbols. Increasing the number of transmit antennas increases
the required training interval and reduces the available time in
which data may be transmitted before the fading coefficients
change.

[51-[7] accomplish decoding or channel estimation for STBC
systems in frequency-selective channel without CSI. A
deterministic channel estimator was derived in [5] when the
channel transfer functions are coprime (no common zeros) and the
transmitted signals have constant-modulus (CM). Relying on
symbol blocking and space-time redundancy, the system in [6] was
shown capable of providing guaranteed symbol recovery
regardless of the underlying channels. [7] enables blind subspace-
based channel estimation for space time orthogonal frequency
division multiplexing (ST-OFDM). However, all of them need
redundant precoder and the redundancy reduces the transmit rate
of symbols.

In this paper, we propose a novel decoding algorithm for full
rate STBC in frequency-selective channels. It combines the blind
subspace-based equalization with the unique feature of STBCs to
accomplish the decoding directly from the over-sampled system
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outputs without the knowledge of the channel. Because the
STBC system has multiple inputs, the equalization results are still
the mixture of these multiple input signals. However, thanks to the
combination, we can easily work out the estimation of the
transmitted symbols from the equalization results. In contrast to
some decoding methods that use the information from previous
data, the new approach provides a closed form solution of
decoding based on a given set of outputs. This solution makes it
more suitable for dynamic systems such as mobile communication
channels.

The paper is organized in five sections following this
introduction. Section 2 presents the system model. Section 3
includes the equalization of the system based on the subspace
method, and Section 4 presents the decoding with the results of
equalization, and Section 5 gives Monte Carlo simulation results.
Section 6 concludes this paper.

2. SYSTEM AND CHANNEL MODEL

We will consider a system with M transmit antennas and
one receive antenna. The extension of the result to the system with
any number of receive antennas is straightforward. Let /#;(¢) be
the channel impulse response between transmit antenna j and the
receive antenna. Without loss of generality, an important
assumption we make here is that the channel response is invariant
within a data burst. In many cases, the length of a data burst is
smaller than the coherence time, so the assumption is also
reasonable.

Let d;(n) be the transmitted symbols from antenna j . The
"noiseless" received signal due to signals transmitted from antenna
Jj can be written as

rj()=2d;(n)h;(t=nT) )

The received signal is over-sampled by a factor of Q, then the
sampling times are

t:kT+% k=012,--- ¢=012,---,0-1 (2)
Then we have
qT qT
Vj(kT+3)=Zdj(n)hj((k—n)T+E) (3)

Also, a reasonable assumption is that the pulse response will have
a finite duration and hence it will have a finite number of taps. Let
L +1 be the number of taps. Let k —n =m . Hence we will have

qT L ~
ri (kT + E) = Z—:odj (k—m)h;(m,q) 4)
where
Iy mg) =+ 40

is the over-sampled discrete time channel response for transmit
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antenna j. For simplicity of notation, let

By = (m0), hy(m1), - b (m,Q = 1] ()

T -Hr
£, (0 = [, (D), T+, 7+ 22000 )
0 0
Therefore, we can write the noiseless discrete time model for the
received signal due to transmit antenna j as

r; (k)= ioﬁ imd (k= m) 7

In the above discussion, we assume that the orders of all transmit
antennas are L +1, but in fact they are different. We can let the
maximum of the orders be L + 1. For the channels with order less
than L +1, the zero tail of the channel response does not affect
the correct channel expression.

The total received signal can be written as:

M
)= 2r, ()
"’:" ®)

M L~
=2 >h;,d;(k-m)
J=0m=0

3. BLIND EQUALIZATION

To eliminate intersymbol interference in frequency-selective
channels, we equalize the received signal based on the subspace
method without CSI at the receiver.

We rewrite the received signal due to transmit antenna j from
symbol period L +1 in the form of a Hankel matrix as

r;(L+1) r;(L+2) rj(N—K+1)_
r;(L+2) r;(L+3) (N —K +2)
Xj(K): ! : ! : ! :
ri(L+K) rj(L+K+1) r;(N)
—E.f>L ﬂ/,L-l E‘/‘,O ~0 e e 0 7
|0 hj, hjq - hjo 0
L0 o o o 0 hy hyy chg
[d;(1) d;2) d;(N-r+1)
d;j(2)  d;03) d;(N-r+2)
L] . . )
Ld(r) d;(r+1) d;(N)
:Hij(r) ©)

where r=K+L,and K=1.2,--- is a smooth coefficient. H;
isa KQxr Toeplitz matrix. D;(r) isa rx(N—-r+1) Hankel
matrix. X;(K) is KQx (N —r +1), the sampled received signal
matrix.

Correspondingly, when there are M transmit antennas, the
overall received signal constructed in the form of a Hankel matrix
can be represented as:

D (»)

M D, (7)
X(K)=2XH;D;(r)=[H,H,,---, Hy ] "
j=1 :

Dy (7)

=HD(r) (10)

where H is a KQxMr matrix. D(r) is an Mrx(N-r+1)
matrix. X(K) is the KQx(N —r+1) sampled received signal
matrix. With the subspace of received signal matrix X(K), we
can realize the blind equalization for the multiple-input multiple-
output (MIMO) system.

Let the space spanned by the rows of D(r) be the "signal
subspace", and its orthogonal complement space is called the
"noise subspace", represented as V,(r), so we have
V,(r)-D(r) =0 . If the columns of H is full-rank, X(K) has
the same signal subspace as D(7) , that is:

R{X(K)} = R{D(r)} ()
In the transmit diversity systems, the propagation environment
results in significant decorrelation among all the transmit antenna
channels. From theory analysis [8], we can easily derive that in
frequency-selective channels, when the over-sampled factor
0> M +1, increasing the smooth coefficient K can make H to
be full column rank for any L.

A subspace decomposition can be performed on X(K) using
a singular value decomposition (SVD) [9]:

20
X(K) =[U,(r) Ua(r)]{0 ‘JR E’j (12)
. (r

V,(r) isan (N —2r+1)x(N —r +1) matrix.

Because of V,(r)-D(r) =0, we have

Vo (NIDi (1), Dy (r)",- Dy (n]1=0  (13)

From (13), it follows that V,(r)-D;(#) =0. And D;(r) isa
Hankel matrix, from the special structure of Hankel matrix we can
derive that V_(r) is orthogonal to any N —r+1 consecutive
elements of d;, where d; :[dj(l),dj(Z),n-,dj(N)]T, an Nxl
vector. The relation between V, (r) and d; can be represented
as:

[07197 Vo(r) 00 1, =0 (=0 —1ij =l M)

Then, we obtain

vd; =0 (14)
where
V,(r) 0 0
vo| OV
: 0
0 0 V,(»

0 is an (N-2r+1)x1 vector, V is an r(N—-2r+1)xN
matrix.

From (14), we can derive that V is orthogonal to the M
vectors, dj,d,,---,d, . So, (14) can be represented as

VD=0 (15)

where D=[d;d;---d)/] is an N x M matrix, the columns of
which are the transmitted symbol sequences of transmit antennas.

Note that (15) reveals a result of the blind equalization for the
MIMO system: the solutions for the transmitted sequences D are

included in the orthogonal complement space of V . From (15),
we can obtain infinite number of possible solutions for D and
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Fig. 1 Space-time block encoder
every time the solution is different. Let Y be a possible solution
for D, and the relation between Y and D is given by:
Y=[d;d;:-dy ]W=DW (16)
where W is an unknown M xM matrix. So, from (15) we can
not acquire the solution for transmitted symbols.

ST block encoder transmits the same symbols among all of
the transmit antennas, so there are some relations among the
symbol sequences of transmitted antennas. Making use of these
relations, without any training symbol we can work out the input
of ST block encoder from the noise subspace V of D.

4. DECODING WITH THE NOISE SUBSPACE

The STBC in this paper is of the maximal rate. Fig. 1 depicts
the ST block encoder considered in this paper, where the
transceiver is equipped with 3 transmit antennas. The input
symbols to the ST block encoder are divided into groups of four
symbols. For a group, the ST block encoder takes as input four
consecutive symbols {x,x,,x;,x,} to output the following
4x3 code matrix

X RY) X3

—X, X —X

C= (17)

-X; X, X

—X, —X; X

where the jth column of C is the transmitted symbol sequence of
transmit antenna j in the four consecutive symbol periods. Based
on this STBC, the code matrix C and input vector
c={x;,x3,x3,x4}7 have following relation (see Appendix for
the proof):

Theorem 1: Denote an mx4 matrix U=[u, u, uyu,],
where u; (j=12,3,4) is the jth column of U, and with the
columns of U, constructa 3m x4 matrix U

u -u, -u; -—u,
U=|u, u -u, u
u;  u,  ow —u,

Then, Uc = vec(UC), where vec(A) represents the vectorization
of matrix A, that is, a vector is constructed by one column of A
following the previous one.

Thus, the product of a matrix U and the code matrix C is
transformed to the product of U , which is coming from U , and
the input symbol vector ¢ . With this feature of the STBC, we can
work out D from VD =0 in (15).

Let D be the output of B groups of ST block coding. If the
ith group input is ¢; =[x,_3,X4_5,%4_;,X%s] and the output
matrix is D;, then D is the output for the input
x=[x; x; xy], (N=4B),and
D:[DlT D, - DQT

Separate the [N —(M +1)r +1]x N matrix V to B segments

and each segment has 4 columns, that is:
v=z, z, - 7] (18)
where Z; is an 7[N —(M +1)r +1]x4 matrix. Then, VD=0
in (15) can be represented as
VD=ZD, +Z,D, +--+Z;D, =0 (19)
Because D; is the ST block encoder output of one group, it
has the same structure as C. Based on theorem 1, the product of
Z; with the matrix D; can be changed to the product of a matrix
Z; with the ith group input symbols [X4i_3,X4i—2,X4i—1,X4i]"
Let Z;=[2;),2:2,2;3,Z; 4], where z;; is the j th column of
Z;.If z;; is considered as u; of U in theorem 1, we can
constructa 3r[N — (M +1)r +1]x4 matrix Z,; :

Z;y, —Z;p, —Z;3 —Z4
Z,=\z2,, Z;; —Z;4 Z;3 (20)
Z;5 Zjy Z,, ~—Z;;

Based on theorem 1, we have

Zi (X435 X410 X4 ’x4i]T =vec(Z,D;) (21)
From (15), we obtain

B B
vec(VD) = vec(z Z,D,)= Z\/ec(Z,.D,) =0. 22)
il i=1
From (21), we can derive that
B B _
2 vee(ZD;) = 3 Zi[xy; 3,340 Xai 1% (23)
i=1 i=1
Let
Z-z, 7, Zy| GAN-(M+D)r+1]xN)  (24)
It follows from (22) and (23) that

Zx =0 (25)
xy]7 isan N x1 vector, which is the
input of ST block encoder and just what we want to work out.
With the SVD, from Zx=0 , we can get the estimation X of x.
However, if X=yx, X also satisfies Zx=0. So, there is a
complex coefficient y between the estimation X and the actual
input x . With the finite alphabet of the communication signals,

where x=[x; x;

the complex coefficient can be removed and does not affect the
decision of symbols. So, in frequency selective channel, we
accomplish the decoder of full rate STBC without CSI.

5. SIMULATION RESULTS

In this section, we show the performance results of Monte
Carlo simulation. The base station is equipped with three transmit
antennas and the mobile station with one antenna. The channel is
assumed to be frequency-selective fading. It is assumed that the
channel fading coefficient has a Gaussian distribution with zero-
mean and a variance 1. The delays are distributed uniformly
within [0,7"). The number of multipaths from each antenna is
distributed uniformly within [4,8]. The over-sampled factor Q is 4.
The noise is zero-mean white Gaussian noise with variable
variance. The DBPSK modulation is used.

We assume that the coherence time is 80 symbol periods.
Channel responses are invariant within the coherence time.
Because of the assumption of coherence time, N must be less
than 80. Consider a vehicle transmitting at a symbol rate of 30
kHz and a frequency of 1.9GHz. If the vehicle moves at 60 mi/h,
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Bit Error Rate(log scale)

Fig. 2 Performance for different N

the coherence time is on the order of 50-100 symbols. So, this
assumption of coherence time is reasonable.

Performance of our decoder: Considering the presence of
noise in (8), from the theory of subspace, we know that the more
the columns of D or the less the rows of D, the more accurate the
estimated subspace of D. If let » be constant and N increased, the
number of columns of D increases while the number of the rows is
invariant. So, the performance will be better. The simulation
results are shown in Fig.2, where r=35.

On the other hand, if let N be constant and r increased, the
column number of D decreases while the row number increases.
The performance will be worse. The simulation results are shown
in Fig.3, where N=24.

Performance comparison against the decoder with known
CSI: We compare the performance of our algorithm against that of
the decoder with known CSI. Both of them have the same channel
model and ST block encoder. In order to be in the similar
conditions, we choose the following algorithm, which has the
same received signal model X(K) as we have constructed in
Section 3.

D(r)=H X(K)
(e)" stands for the Moore-Penrose pseudo-inverse. According to
the rule of equal gain combining, we combine the same symbols in
D(r) and according to the rule of ST block coding, the input of
ST block encoder is worked out.

The performance results are shown in Fig. 4, where N =24,
from which we can see that the performance of the decoder with
known CSI is between those of our algorithm for » =4 and
r =5, while our algorithm does not use CSI. But the computation
load of our algorithm is a little larger than that of the decoder with
known CSI. Because the coherence time is 80 symbol periods,
increasing N can make the subspace more accurate and the
performance will be better.

6. CONCLUSION

We have developed a novel space-time decoder for STBC in
unknown frequency-selective channels. Relying on the subtle
combination of blind subspace-based equalization with the special
space-time structure of STBC, the decoding is accomplished for
the maximal rate STBC, which does not need channel state
information and the redundancy of transmitted symbols in time
domain. Simulation results show that the performance of our
algorithm approaches that of the decoder with known channel state
information.

APPENDIX
(PROOF OF THEOREM 1)

Fig. 3 Performance for different »
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Fig. 4 Performance comparison against
the decoder with known CSI

X1 X2 X3
— X2 X1 — X4

UC=[u; u; u3 uy] :[31 aj 33]
— X3 X4 X1

— X4 —X3 X2

where aj,a,,a; are mx1 vectors,
a; = Upx; —UpXp —U3x3 —UyXy ,
a, =UjXy +UrXx; +U3X4 —UgX3,
a3 =Upx3 —UyXxg +U3X; +UgXy ,

UipX; —UpXxy; —U3z3X3 —UygXyg a
Uc=|urx; +ujx; —uyx; +uzxy [=|ap =V€C(UC)
U3xX] +UWgXy +U X3 —UpXg aj
So, we have Uc = vec(UC) a
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