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ABSTRACT

In this paper, we present a new method for identification of FIR
MIMO channels driven by unknown, uncorrelated and colored sources.
This method, belonging to the BID (i.e., blind identification by
decorrelation) family, make use of the mutual uncorrelation of the
unknown sources by first decorrelating the observed signals into
two uncorrelated groups. The two decorrelators are then used to
estimate the channel matrix (i.e., MIMO channel transfer function
matrix) up to a constant matrix. This constant matrix is finally de-
termined using a BID method for instantaneous MIMO channels.
This new method, named BID-G, is shown to be much more ro-
bust than the subspace method that requires the channel matrix to
be irreducible and column-reduced.

1. INTRODUCTION

Blind identification of multiple-input-multiple-output (MIMO) chan-
nels is a problem arising from a wide range of applications. In
this paper, we consider the case where the MIMO channel has
a finite-impulse-response (FIR) and driven by unknown, uncorre-
lated and colored sources. The existing methods for this problem
include the subspace method [1] [2] and [3]. This family of meth-
ods requires that the channel matrix is irreducible and column-
reduced. Another method shown in [4] also requires the same
condition. A recent method called blind identification by decorre-
lating subchannels (BID-S) [5] [6] has reduced the above require-
ment. A core step of the BID-S method is to exploit the uncor-
related sources by decorrelating subchannels. The BID-S method
is a generalization of the BID-I method [7] [8] that only works
on instantaneous MIMO channels. In this paper, we present a
new method in the BID family, called BID-G, which represents
a new progress of the development of the BID family. The BID-G
method first constructs two group decorrelators and then exploits
the decorrelators to estimate the MIMO channel matrix up to an
unknown constant matrix. This constant matrix is then estimated
using the BID-I method. The BID-G method requires that each
column of the channel matrix is irreducible and the other remain-
ing columns are irreducible and column-reduced. This is a weaker
condition than that the whole channel matrix is irreducible and
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column-reduced. Hence, the BID-G method is more robust than
the subspace method.

In the next section, we provide the problem formulation and
also explain the key condition of the subspace method. In section
3, the theory of the BID-G method is presented. In section 4, we
illustrate the performance of the BID-G method in a contrast to the
subspace method.

2. PROBLEM FORMULATION

Consider an FIR MIMO channel described by

y�n� �

qX
k��

Hkx�n� k� �w�n� (1)

where x�n� is the vector of m input signals, y�n� is the vector of
p output signals, fHkg

q
k�� is the p � m matrix sequence of the

channel’s impulse response with length q , and w�n� is a noise
vector that is uncorrelated with x�n�.

An equivalent form of (1) is y�n� � H�z�x�n��w�n� where
H�z� �

Pq

k��Hkz
�k. We assume that there are sufficient data

such that the second-order-statistics can be exploited. We write the
autocorrelation matrix of y�n� at lag � as

Ryy��� �� lim
N��

�

N

N��X
n��

y�n� � �yT �n� (2)

and the power spectral matrixSyy�z� ofy�n� is defined asSyy�z� �PM

���M Ryy�� �z
�� where M may be finite (or infinite) depend-

ing on the source power spectra. The power spectral matrices of
the sources x�n� are similarly defined. The power spectrum of the
white noise is Sww�z� � ��I� Then from (1) and note that the
noise is uncorrelated with the sources, we have

Syy�z� � H�z�Sxx�z�H
T �z��� � �

�
I (3)

If p � m, the noise spectra can be obtained asymptotically [5].
For a simpler presentation, we will drop the noise term, and hence
our theory will be based on the noiseless model

Syy�z� � H�z�Sxx�z�H
T �z��� (4)

The aim here is to estimate the channel matrix H�z� using the
autocorrelation matrices Ryy����
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Let Tl�H� denote the �l � ��p � �q � l � ��m generalized
Sylvester matrix of H�z�� i.e.,

Tl�H� ��

��� H� � � � Hq

. . .
. . .

H� � � � Hq

��� �
Let Cl�H� denote a �q� l���p� �l���m dual matrix of Tl�H�,
i.e.,

Cl�H� ��

��������

H�

...
. . .

Hq H�

. . .
...
Hq

�������� �

The subspace method requires the following assumptions:

(A1). H�z� is irreducible and column reduced;

(A2). All columns of H�z� have the same degree q;

(A3). l � max��j�p�m L�j �

where fL�j g
p�m
� are the dual Kronecker indices of the rational

subspace spanned by the column vectors ofH�z�.
An practical upper bound of max��j�p�m L�j ismq and hence

one can choose l � mq in practice.
Under the above conditions, the subspace method can obtain

the channel matrix up to a unknown constant matrix Q.[2]. This
matrix can be then identified up to scaling and permutation by the
joint diagonalization method if the sources satisfy

(A4). The sources are mutually uncorrelated and of distinct power
spectra.

3. THE THEORY OF THE BID-G METHOD

3.1. Group Decorrelation

Let hi�z� be the ith column of H�z� and Hi�z� the remaining
submatrix of H�z�. Note that any of the above submatrices of
H�z� is more likely to be (or closer to be) irreducible and column-
reduced than H�z� itself. The BID-G method attempts to find the
left null spaces of Tl��hi� and Tl��Hi�� here l� � q and l� �
�m� ��q, and then applies the subspace method to identify hi�z�
and Hi�z� up to scaling or a �m� ��� �m� �� constant matrix
respectively.

Now we show that the left null spaces of Tl��hi� and Tl��Hi�
can be found by decorrelating the output signals into two uncorre-
lated groups. Let L� � p�l� � �� � �l� � � � q�� L� � p�l� �

��� �m� ���l� � q � ���G��z� �
Pl�

i��G�iz
�i � R�z�L��p,

G��z� �
Pl�

i��G�iz
�i � R�z�L��p with

T��G�� � �G��� G��� � � � � G�l� � � R
L��p�l�����

T��G�� � �G��� G��� � � � � G�l� � � R
L��p�l����

having full row ranks. Here R� R�z� represent the real number field
and polynomial matrix set with real coefficient matrices.

The main technical result of this paper is the following

Theorem 1. Suppose G��z� andG��z� satisfy the conditions
discussed above. Also assume that H�z��Sxx�z� meet (A1-A4)
with (A3) replaced by

� (A3’). l� � q� l� � �m� ��q�

Then, by constructing two decorrelators G��z� and G��z�
such that the output of first decorrelator is uncorrelated with that
of the second, i.e.,

G��z�Syy�z�G
T
� �z

��� � � (5)

we achieve that the output signals of the two decorrelators are due
to two distinct groups of the input signals of the MIMO channel,
i.e.,

�i � f�� 	� � � � �mg �G��z�hi�z� � ��G��z�Hi�z� � � (6)

which is equivalent to

�i � f�� 	� � � � �mg � T��G��Tl��hi� � �� T��G��Tl��Hi� � ��

where hi�z� is the ith column of H�z� and Hi�z� denotes the
remaining submatrix of H�z�.

The proof is omitted due to space limitations.

3.2. Channel Estimation

Note that

T��G��Tl��hi� � � �� Cq�G��C��hi� � �

T��G��Tl��Hi� � � �� Cq�G��C��Hi� � �

The coefficient matrices of hi�z� and Hi�z�� namely C��hi� and
C��Hi� in the above equations� can be found up to scaling or a
constant matrix respectively by performing singular value decom-
position on Cq�G�� and Cq�G�� and getting their right null space.

Now we have in hand an estimate of the channel, namelybH�z� � �bhi�z�� bHi�z��� which is equal to H�z� up to a right in-
vertible constant matrix, i.e., there is a nonsingular matrix Q such
that H�z� � bH�z�Q. Since H�z� is irreducible, so is bH�z�. We
can compute an equalizer EH�z� satisfying EH�z� bH�z� � I .
However, the computation of the equalizer may be very sensitive
to estimation errors if (A1) is not well satisfied. In this paper, we
use the generalized equalizer GH�z� satisfying GH�z� bH�z� �
��z�I where ��z� can be any polynomial.

The output of the generalized equalizer, sayv�n� � GH�z�y�n�,
satisfies

Svv�z� � GH�z�Syy�z�G
T
H�z���

and hence Svv�z� � Q��z���z���Sxx�z�Q
T � The matrix Q is

then obtained by the diagonalization method [8].

3.3. The Cost Function of BID-G

Note that (5) is equivalent to

T��G��P ���T��G��
T � ���M � � � M (7)

where T��G�� � R
L��p�l����� T��G�� � R

L��p�l����,and

P ��� �

��� Ryy�� � � � � Ryy�� � l��
...

. . .
...

Ryy�� � l�� � � � Ryy�� � l� � l��

���
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We can choose the following cost function

J��G�� G�� � trace

�
M�X

���M�

G�P ���GT
�G�P

T ���GT
�

�
(8)

where G� and G� are the coefficient matrices, denoted by T��G��
and T��G�� in (7), of G��z� and G��z� respectively. Here, M�

is the lag length we used. It may be smaller than M since some
part of the equations in (7) may be enough (in theory) to imply
all the other equations. In order to make the solution unique, up
to a left unitary matrix, and the minimum of the cost function is
close to zero, we need some extra constraints on G�and G� and
recondition the matrix P �� �.

Let

Yl ��

��� Ryy��� � � � Ryy�l�
...

. . .
...

Ryy��l� � � � Ryy���

��� � l � l�� l��

If Yl� and Yl� are nonsingular, we can add constraints on G��z�
and G��z� such that

T��G��Yl�T��G��
T � IL�

T��G��Yl�T��G��
T � IL�

This idea is very similar as the prewhitening technique for blind
source separation [8]. The difference is the prewhitening is per-
formed for the left decorrelaor and the right decorrelaor separately.

However, generally, Yl� and Yl� may be singular and the ranks
may be difficult to estimate correctly in practice. In this case, it
means that there exist a polynomial vector g�z� with degree l� or
l� respectively satisfying gT �z�H�z� � �� In our algorithm, we
modify the ”prewhitening” algorithm in the following way.

Denote the singular value decompositions of Yl� and Yl� by
Yl� � U�S�U

T
� and Yl� � U�S�U

T
� . (Note that Ryy��k� �

RT
yy�k� and hence Yl is symmetric). Set

bS��k� k� �

�
S��k� k�� if

S��k�k�
S������

� �

�� otherwise
�

bS��i� i� �

�
S��i� i�� if

S��i�i�
S������

� �

�� otherwise
�

for � 	 k 	 p�l� � ��� � 	 i 	 p�l� � ��� The off diagonals ofbS� and bS� are zero. Then we replace P �� � by

P ��� � bS� �

�

� U
T
� P ���U� bS� �

�

�

and use the following new cost function

J �X�� X�� � trace

�
M�X

���M�

X�P ���XT
� X�P

T
�� �XT

�

�
(9)

We find Gi � Xi
bS� �

�

i UT
i by minimizing this cost function

under the constraintXiX
T
i � ILi

� i � �� 	�

3.4. Alternating Projection

Since the cost function is nonlinear, it is difficult to get the global
minimum generally. However, for a fixed G� (or G��� the cost
function is a quadratic function of G� (or G� respectively). We
can minimize the cost function with respect to G� or G� in an
alternating fashion. We refer to this procedure as alternating pro-
jection(AP).

Since there arem possible group decorrelators, it is not always
necessary to get the global minimum. We only need to find one of
the possible group decorrelators.

Let �G�� G�� �� , where � is the value of the cost function, be a
local minima achieved by alternating projection from a randomly
selected initial point. In simulations for m � 
� we observe that
�G�� G�� may not be a group decorrelator, but G� is very likely
to be a part of the left null space of one column of the channel,
i.e., G�Tl��hi� 
 �. Based on this observation, we estimate one
polynomial vector, say h�z�� from G�Tl��h� 
 �� and use the
left null space of Tl��h�, say cG�, as the initial point of G� for the
next round of alternating projection. We now outline the proposed
algorithm in the following

1. Find a local minima �G�� G�� �� using AP from any initial
point. Set G�

� � G�� G
�
� � G�� �� � �� k � ��

2. Compute the minimal right singular vector, denoted by h,
of Cq�Gk

��z�� where Gk
��z� is a polynomial matrix with

T��G
k
�� � Gk

� ;

3. Set G� to be an orthogonal basis of the left null space of
Tl��h� where h�z� is a polynomial vector with C��h� � h;

4. Using G� as the initial point and apply the AP algorithm,
one get another local minima �G�� G�� ���

5. Check if this local minima has been encountered before. If
it does not repeat the previous ones, set k � k � �� Gk� �
G�� G

k
� � G�� �k � � and go to step 2. Otherwise, find

the best one with minimal cost function among this chain
of local minimas.

Our simulations show that this algorithm is rather effective to
overcome the local minima problem. In the simulations performed
for this paper, we perform each group decorrelation with randomly
selected initial points.

4. SIMULATIONS

In this section, some numerical simulations are performed on the
proposed blind identification algorithm based on group decorrela-
tion to compare with subspace method presented in [2].

Example 1. We randomly selected ��� channels H�z� with
dimension �� 
 and of degree 
 and three sources with randomly
selected power spectra of degree 
. The SNR is chosen to be 20dB
and the number of samples is 10000. In order to show how many
channels are well estimated by the BID-G method and the sub-
space method, the channels are ordered with increasing NMSE for
BID-G in the upper part of Figure 1. Here, NMSE stands for nor-
malized mean square error of the channel estimation. In the lower
part of Figure 1, the channels are ordered with increasing NMSE
for the subspace method. The advantage of the BID-G method
is clearly shown in Fig. 1. The BID-G performs well (NMSE
less than -20dB) for about 80% of all channels while the subspace
method for about 15%. Moreover, for most channels, the BID-G
performs better than the subspace method.
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Example 2. In this simulation, we chose a relatively well-
conditioned channel from 100 channels randomly selected and tested
the performance of the two methods versus signal noise rate (SNR).
The minimal singular value of Tl�H� for this channel is 0.0947
where l � mq � �. The power spectra of the sources are of
degree 8 and randomly selected for each run. The NMSE is the
averaged among 60 runs. The number of samples was chosen to
be 10000.

Example 3. Fig. 3 demonstrates the performance of the two
methods for a relatively ill-conditioned channel. The minimal sin-
gular value of Tl�H� for this channel is 0.0020 where l � �. The
other parameters were selected in the same way as Example 2.
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Fig. 1. A comparison of the BID-G and subspace methods
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Fig. 2. Performance comparison of the BID-G and subspace methods
for a well-conditioned channel
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Fig. 3. Performance comparison of the BID-G and subspace methods
for an ill-conditioned channel

5. CONCLUSION

In this paper, we have presented a new method in the BID family
for blind identification of FIR MIMO channels driven by unknown,
uncorrelated and colored signals. This new method, BID-G, is
shown to be much more robust than the subspace method. Further
study of the BID-G method in comparison to the BID-S method is
currently underway.
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