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ABSTRACT

In this paper, we present a new method for identification of FIR

MIMO channels driven by unknown, uncorrelated and colored sources.

This method, belonging to the BID (i.e., blind identification by
decorrelation) family, make use of the mutual uncorrelation of the
unknown sources by first decorrelating the observed signals into
two uncorrelated groups. The two decorrelators are then used to
estimate the channel matrix (i.e., MIMO channel transfer function
matrix) up to a constant matrix. This constant matrix isfinally de-
termined using a BID method for instantaneous MIMO channels.
This new method, named BID-G, is shown to be much more ro-
bust than the subspace method that requires the channel matrix to
be irreducible and column-reduced.

1. INTRODUCTION

Blind identification of multiple-input-multiple-output (MIMO) chan-

nels is a problem arising from a wide range of applications. In
this paper, we consider the case where the MIMO channel has
a finite-impulse-response (FIR) and driven by unknown, uncorre-
lated and colored sources. The existing methods for this problem
include the subspace method [1] [2] and [3]. Thisfamily of meth-
ods requires that the channel matrix is irreducible and column-
reduced. Another method shown in [4] also requires the same
condition. A recent method called blind identification by decorre-
lating subchannels (BID-S) [5] [6] has reduced the above require-
ment. A core step of the BID-S method is to exploit the uncor-
related sources by decorrelating subchannels. The BID-S method
is a generalization of the BID-I method [7] [8] that only works
on instantaneous MIMO channels. In this paper, we present a
new method in the BID family, called BID-G, which represents
anew progress of the development of the BID family. The BID-G
method first constructs two group decorrelators and then exploits
the decorrelators to estimate the MIMO channel matrix up to an
unknown constant matrix. This constant matrix is then estimated
using the BID-I1 method. The BID-G method requires that each
column of the channel matrix is irreducible and the other remain-
ing columns are irreducible and column-reduced. Thisisaweaker
condition than that the whole channel matrix is irreducible and
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column-reduced. Hence, the BID-G method is more robust than
the subspace method.

In the next section, we provide the problem formulation and
aso explain the key condition of the subspace method. In section
3, the theory of the BID-G method is presented. In section 4, we
illustrate the performance of the BID-G method in acontrast to the
subspace method.

2. PROBLEM FORMULATION

Consider an FIR MIMO channel described by
q
y(n) =) Hix(n—k) +w(n) )
k=0

where x(n) is the vector of m input signals, y(n) is the vector of

p output signals, {Hy }i_, isthe p x m matrix sequence of the

channel’s impulse response with length ¢ , and w(n) is a noise
vector that is uncorrelated with x(n).

Anequivalent formof (1) isy(n) = H(z)x(n)+w(n) where
H(z) = 3¢, Hyz™*. We assume that there are sufficient data
such that the second-order-statistics can be exploited. We writethe
autocorrelation matrix of y(n) atlag v as

N—-1

Ryy(r)= Jim Sty @
and the power spectral matrix Syy (2) of y(n) isdefined as Sy, (2) =
M s Ryy(1)2~7 where M may be finite (or infinite) depend-
ing on the source power spectra. The power spectral matrices of
the sources x(n) are similarly defined. The power spectrum of the
white noise is Sww(z) = 6°I. Then from (1) and note that the
noise is uncorrelated with the sources, we have

Syy (2) = H(2)Ssx (=) H' (= 1) + 6’1 ©

If p > m, the noise spectra can be obtained asymptotically [5].
For a simpler presentation, we will drop the noise term, and hence
our theory will be based on the noiseless model

Syy(2) = H(2)Sxx(2)H" (z71) 4)

The aim here is to estimate the channel matrix H(z) using the
autocorrelation matrices Ryy (7).
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Let 7;(H) denote the (I + 1)p x (¢ + I + 1)m generaized
Sylvester matrix of H(z), i.e,

Hy --- H,
Ti(H)= .
H, --- H,

LetC;(H) denotea(q+1+1)p x (I+ 1)m dua matrix of 7;(H),
ie,

Hy,
CGH)=| H, H,
H,
The subspace method requires the following assumptions:

(Al). H(z) isirreducible and column reduced;
(A2). All columns of H(z) have the same degree g;
(AS) l Z maxi<j<p-m L]L

where {L; }}~™ are the dual Kronecker indices of the rational
subspace spanned by the column vectors of H(z).

An practical upper bound of max;<;j<p—m le ismgq and hence
one can choose! > mgq in practice.

Under the above conditions, the subspace method can obtain
the channel matrix up to a unknown constant matrix @.[2]. This
matrix can be then identified up to scaling and permutation by the
joint diagonalization method if the sources satisfy

(A4). Thesources aremutually uncorrelated and of distinct power
spectra.

3. THETHEORY OF THE BID-G METHOD

3.1. Group Decorrelation

Let h;(z) be the ith column of H(z) and H;(z) the remaining
submatrix of H(z). Note that any of the above submatrices of
H(z) ismorelikely to be (or closer to be) irreducible and column-
reduced than H(z) itself. The BID-G method attempts to find the
left null spaces of 7;, (h;) and 7;, (H;), herely, > gand i >
(m — 1)q, and then applies the subspace method to identify h; (z)
and H;(z) up to scaling or a(m — 1) x (m — 1) constant matrix
respectively.

Now we show that the left null spaces of 77, (h;) and 77, (H;)
can be found by decorrelating the output signals into two uncorre-
lated groups. Let Ly = p(li +1) — (It + 1 + q), L> = p(l> +
1) — (m = 1)l + g+ 1), G1(2) = XIL, Griz ™ € R[JP1 7P,
Ga(z) = 2, Goiz™' € R[2]X2 %P with

To(G1) = [G11,G12,--+ , Gy ] € Rt ><p(l1+1),

To(G2) = [G21,G22,- -+ ,Ga,] € REzxplz+1)
having full row ranks. Here R, R[] represent the real number field

and polynomia matrix set with real coefficient matrices.
The main technical result of this paper isthe following

Theorem 1. Suppose G1(z) and G2 (z) satisfy the conditions
discussed above. Also assume that H(z), Sxx(z) meet (A1-A4)
with (A3) replaced by

o (A3).lh > q,l2 > (m—1)g.

Then, by constructing two decorrelators Gi (z) and G2 (z)
such that the output of first decorrelator is uncorrelated with that
of the second, i.e.,

G1(2)Syy(2)G3 (=) =0 ©)

we achieve that the output signals of the two decorrelators are due
to two distinct groups of the input signals of the MIMO channel,
ie.,

Fe{1,2,---,m},Gi(2)hi(z) =0,G2(2)H;(2) =0 (6)

which is equivalent to
Fie{l,2,--- ,m},To(G1)Ti, (hi) = 0,To(G1)Ti, (Hi) = 0.

where h;(z) is the ith column of H(z) and H;(z) denotes the
remaining submatrix of H(z).
The proof is omitted due to space limitations.

3.2. Channé Estimation
Note that

To(G1)Ti; (hi) = 0 <= C4(G1)Co(hi) =0

T0(G2)Ti, (Hi) = 0 <= Cy(G2)Co(Hi) = 0
The coefficient matrices of h;(z) and H;(z), namely Co(h;) and
Co(H;) in the above equations, can be found up to scaling or a
constant matrix respectively by performing singular value decom-
position on Cq(G1) and C,(G2) and getting their right null space.

Now we have in hand an estimate of the channel, namely
H(z) = [hi(2), Hi(2)], which is equal to H(z) up to aright in-
vertible constant matrix, i.e., there is anonsingular matrix @ such
that H(z) = H(2)Q. Since H(z) isirreducible, so is H(z). We
can compute an equalizer Ey (z) satisfying EH(z)ﬁ(z) = I
However, the computation of the equalizer may be very sensitive
to estimation errors if (A1) is not well satisfied. In this paper, we
use the generalized equalizer Gy (z) satisfying G (2)H(z) =
a(z)I where a(z) can be any polynomial.

Theoutput of thegeneralized equalizer, say v(n) = Gu (2)y(n),
satisfies

Swv(2) = G (2)Syy (2)GHr (=)

and hence Syv (2) = Qa(2)a(z™ 1) Sxx(2)QT. The matrix Q is
then obtained by the diagonalization method [8].

3.3. The Cost Function of BID-G
Note that (5) is equivalent to

To(G1)P(T)To(G2)' =0,-M <7< M )

where 75(G1) € Rt ><p(11+1>776((;2) € REz2xpl2+1) gng
Ryy (1) Ryy(r +12)
P(T) — . .

Ryy(r — 1) Ryy(t+12— 1)
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We can choose the following cost function
J1(G1,G2) —trace{ Z G1P(r G§GQPT(T)G1T} (8)

where G; and G are the coefficient matrices, denoted by 76(G1)
and 7o(G2) in (7), of G1(z) and G2(z) respectively. Here, M
is the lag length we used. It may be smaller than M since some
part of the equations in (7) may be enough (in theory) to imply
al the other equations. In order to make the solution unique, up
to a left unitary matrix, and the minimum of the cost function is
close to zero, we need some extra constraints on Giand G» and
recondition the matrix P(r).

Let
Ryy (0) Ryy (1)
Y= : : Jd=11,1.
Ryy(=1) Ryy (0)
If Y7, and Y}, are nonsingular, we can add constraints on Gi (z)
and G(z) such that
To(G)Yi, To(G1)" = I,
To(G2)Yi, To(Go)" = I,

This idea is very similar as the prewhitening technique for blind
source separation [8]. The difference is the prewhitening is per-
formed for the left decorrelaor and the right decorrel aor separately.

However, generaly, Y;, and Y;, may be singular and the ranks
may be difficult to estimate correctly in practice. In this case, it
means that there exist a polynomial vector g(z) with degree i, or
I» respectively satisfying g7 (2)H(z) = 0. In our algorithm, we
modify the " prewhitening” agorithm in the following way.

Denote the singular value decompositions of Y;, and Y}, by
Yy, = UiSiUY and Vi, = UsS»Us. (Note that Ry, (—k) =
R, (k) and hence Y] is symmetric). Set

Gk k) = { Sk, i S > e
' 1, otherwise
e Sy (i, 1), if S201) 5 ¢
Sy(ii) = s ST ,
2(i, ) { 1,othGrW|se

for1 <k < p(li +1),1 <i < p(ly +1). The off diagonals of
S1 and S; are zero. Then wereplace P(r) by

-

~—1

— ~ 1 —
P(r) =5, 2U{ P(r)UsS, 2

and use the following new cost function
T(X1,Xs) = trace{ Z X, P(r XZTXQFT(T)XIT}
)

~_1
We find G; = X;S; U by minimizing this cost function
under the congtraint X; X = Ir,,i = 1,2.

3.4. Alternating Projection

Since the cost function is nonlinear, it is difficult to get the global
minimum generally. However, for a fixed Gy (or G»), the cost
function is a quadratic function of Go (or G respectively). We
can minimize the cost function with respect to Gi or G2 in an
aternating fashion. We refer to this procedure as alternating pro-
jection(AP).

Sincethere are m possible group decorrelators, it isnot always
necessary to get the global minimum. We only need to find one of
the possible group decorrelators.

Let (G1,G2,¢) , wheree isthevalue of the cost function, bea
local minima achieved by alternating projection from a randomly
selected initial point. In simulations for m > 3, we observe that
(G1, G2) may not be a group decorrelator, but G- is very likely
to be a part of the left null space of one column of the channel,
i.e, G2Ti,(h;) ~ 0. Based on this observation, we estimate one
polynomial vector, say h(z), from G>7;,(h) = 0, and use the
left null space of 7, (h), say G, astheinitial point of G, for the
next round of alternating projection. We now outline the proposed
algorithm in the following

1. Find alocal minima (G1, Gz, ) using AP from any initial
point. Set Gi = G1,G3 = Ga,e1 =€,k = 1;

2. Compute the minimal right singular vector, denoted by h,
of C,(G5(2)) where G5(2) is a polynomial matrix with
To(G3) = G5;

3. Set G, to be an orthogonal basis of the left null space of
Ti, (h) whereh(z) isapolynomial vector with Co(h) = h;

4. Using G as the initial point and apply the AP algorithm,
one get another local minima (G1, G2, €).

5. Check if thislocal minima has been encountered before. If
it does not repeat the previous ones, setk = k + 1,GF =
G1,G% = Ga,e, = e and go to step 2. OtherW|se find
the best one with minimal cost function among this chain
of local minimas.

Our simulations show that this algorithm is rather effective to
overcome thelocal minima problem. In the simulations performed
for this paper, we perform each group decorrelation with randomly
selected initial points.

4. SIMULATIONS

In this section, some numerical simulations are performed on the
proposed blind identification algorithm based on group decorrela-
tion to compare with subspace method presented in [2].

Example 1. We randomly selected 100 channels H(z) with
dimension 4 x 3 and of degree 3 and three sources with randomly
selected power spectra of degree 8. The SNR is chosen to be 20dB
and the number of samplesis 10000. In order to show how many
channels are well estimated by the BID-G method and the sub-
space method, the channels are ordered with increasing NM SE for
BID-G in the upper part of Figure 1. Here, NM SE stands for nor-
malized mean square error of the channel estimation. In the lower
part of Figure 1, the channels are ordered with increasing NM SE
for the subspace method. The advantage of the BID-G method
is clearly shown in Fig. 1. The BID-G performs well (NMSE
less than -20dB) for about 80% of all channels while the subspace
method for about 15%. Moreover, for most channels, the BID-G
performs better than the subspace method.
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Channel Estimate Errors

Example 2. In this simulation, we chose a relatively well-
conditioned channel from 100 channels randomly selected and tested
the performance of thetwo methods versussignal noiserate (SNR).
The minimal singular value of 7;(H) for this channel is 0.0947
where | = mq = 9. The power spectra of the sources are of
degree 8 and randomly selected for each run. The NMSE is the
averaged among 60 runs. The number of samples was chosen to
be 10000.

Example 3. Fig. 3 demonstrates the performance of the two
methods for arelatively ill-conditioned channel. The minimal sin-
gular value of 7;(H) for this channel is 0.0020 where! = 9. The
other parameters were selected in the same way as Example 2.

NMSE(dB)

-5 | | | | | |
5 10 15 20 25 30

SNRin dB
Fig. 3. Performance comparison of the BID-G and subspace methods
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5. CONCLUSION
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ig. 1. A comparison of the BID-G and subspace methods
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In this paper, we have presented a new method in the BID family
for blind identification of FIR MIMO channels driven by unknown,
uncorrelated and colored signals. This new method, BID-G, is
shown to be much more robust than the subspace method. Further
study of the BID-G method in comparison to the BID-S method is
currently underway.
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