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ABSTRACT

In this work, we study the multiuser mulitple-input multiple-output
(MIMO) multiple access channel (MAC) under the assumption
that the base station performs linear multiuser minimum mean-
square error (MMSE) detection. We derive the average sum MSE
and minimize it under a sum power constraint with respect to the
transmit covariance matrices of the users. Furthermore, we charac-
terize the optimum power allocation among the users in regards of
the single-user region. For low SNR values, the optimum strategy
is to only have the best user transmitting at a time. The single-user
region decreases with the number of receive antennas at the base
station and with the number of users in the system. In addition,
we derive the individual MSE using single user MMSE detectors
and study the fulfillment of MSE requirements. We illustrate all
theoretical results by numerical simulations.

1. INTRODUCTION

The increasing need for fast and reliable wireless communication
links has opened the discussion about systems with multiple an-
tennas both located at the transmitter and the receiver, so called
multiple-input multiple-output (MIMO) systems [1]. Systems with
multiple antennas at one side of the link are well known [2] for
increasing the capacity and performance. Recently, it was discov-
ered that MIMO systems have the ability to reach higher transmis-
sion rates than one-sided array links [3],[4].

In this work, we study the uplink transmission of K users,
each equipped with nT transmit antennas, to the base station which
has nR receive antennas. In [5], the authors maximize the ergodic
sum capacity of the MIMO MAC for fixed individual power con-
straints for the transmit covariance matrices. For fixed power con-
straints P̃1, ..., P̃K , the sum capacity is maximized with Tr(Qk) ≤
P̃k 1 ≤ k ≤ K. It is shown that the optimal transmit covari-
ance matrices are characterized by an iterative water-filling solu-
tion which treats the other users like noise with Tr(Q̂k) = P̃k,
1 ≤ k ≤ K.

We consider the case in which the base station uses the linear
MMSE detector in order to detect the signals from the K users.
The performance criterium for this receiver is the MSE. In [6],
the linear MMSE multiuser receiver for synchronous CDMA sys-
tems is analyzed. We apply and extend the results of [6] for the
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MIMO transmission model and compute the MSE as a function of
the transmit covariance matrices and power allocation of the users.
In addition to this, we derive the optimization problem which min-
imizes the sum MSE and the optimization problem which balances
the MSE requirements of the users. Using optimization theory we
provide an algorithm for the case in which only one user is trans-
mitting. The single-user region is the SNR range in which only the
best user transmits simultaneously. The analysis of the structure of
the optimum transmission strategy which minimizes the sum MSE
is difficult. In order to analyze the properties of the optimum trans-
mission strategy, we study the behaviour at low SNR values. We
consider the point at which the second user is allowed to trans-
mit. These effects at low SNR values give insight into the general
structure of the optimal transmit covariance matrices.

We illustrate the impact of the number of users and the num-
ber of receive antennas on the single-user range. We show that the
single-user range decreases as the number of receive antennas at
the base station increases. In addition to this, the number of users
lowers the single-user range. Finally, we illustrate all our theoreti-
cal results by numerical simulations.

2. SIGNAL MODEL, SUM AND, INDIVIDUAL MSE

In this section, we present the signal model and review the linear
MMSE receiver at the base station. Furthermore, we derive the
sum MSE and the individual MSEs.

2.1. Signal model

In figure (1), we show the signal model for the MIMO MAC with
the multiuser MMSE receiver. K mobiles with nT antennas each
transmit to the base station with nR receive antennas. The transmit
signal from user i at each point k is given by xi(k). The transmit
covariance matrix of the i-th user is given by Qi.

The received signal at the base station is given by

y =
K∑

k=1

Hkxk + n. (1)

We assume a flat fading MIMO channel Hk for all users in (1).
Addionally, we have the additive white Gaussian noise vector n
with noise variance σ2

n.
Equation (1) can be rewritten in compact form as

y = Ĥx̂ + n (2)
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Fig. 1. MIMO MAC with MMSE multiuser receiver

with Ĥ = [H1,H2, ..., HK ] and x̂ = [xT
1 , ..., xT

K ]T . We collect
the transmit covariance matrices in

Q̂ =




Q1 0 0 ... 0
0 Q2 0 ... 0

0 0
. . . 0 0

0 0 0 0 QK


 . (3)

2.2. Normalized sum MSE of the linear MMSE receiver

We follow the definition and derivation of the normalized MSE in
[6] for the synchronous CDMA system. The linear MMSE mul-
tiuser receiver computes the data estimate

x̃ = Q̂ĤH
(
σ2

nI + ĤQ̂ĤH
)−1

y. (4)

The covariance matrix of the estimation error ε is given as

Kε = Q̂ − Q̂ĤH
(
ĤQ̂ĤH + σ2

nI
)−1

ĤQ̂. (5)

We define the matrix A for convenience

A = σ2
nI +

K∑
k=1

HkQkH
H
k (6)

From (5), it follows the normalized MSE as

MSE = tr(Q̂−1/2KεQ̂
−1/2) = KnT −

nR∑
i=1

µi

σ2
n + µi

= KnT − nR + σ2
n

nR∑
i=1

1

σ2
n + µi

= KnT − nR + σ2
ntr

(
A−1

)
(7)

with µi as the eigenvalues of ĤQ̂ĤH . The MSE is minimized by
minimizing the sum in the RHS of (7). It is worth mentioning that
the term

∑nR
i=1

1
σ2

n+µi
is a Schur-convex function with respect to

the µi [7]. Therefore, the term is minimized if all eigenvalues µi

are equal. We cannot directly control the µi. We can influence the
eigenvalues µi indirectly by choicing Q1, ..., QK . This leads us
to the first problem statement:

Problem 1: In order to minimize the sum MSE in (7) find the opti-
mal transmit covariance matrices Q∗

1, ..., Q
∗
K which minimize the

RHS of (7) with (6)

Q∗
k = arg min

Qi≥0∑K
k=1 tr(Qk)≤P

tr
(
A−1) . (8)

2.3. Normalized individual MSEs

In this scenario, we assume that each user has an indiviual re-
quirement regarding his MSE. Because each mobile uses different
services it requires different MSE. Let the MSE requirements be
given by γ1, ..., γK . The individual MMSE estimation for user k
is given by

x̂k = QkH
H
k

(
K∑

l=1

HlQlH
H
l + σ2

nI

)−1

y. (9)

The normalized MSE of the k-th user is given by

MSEk = (10)

nT − tr

(
HkQkH

H
k

(∑K
l=1 HlQlH

H
l + σ2

nI
)−1

)

The MSE requirements are feasible for given channel realizations
and SNR if

MSEk ≤ γk ∀k ∈ [1...K].

Hence, the MSE balancing problem is given by

Problem 2: For fixed channel realizations H1, ..., HK and fixed
SNR, solve the following optimization problem

r = min∑
K
i=1 tr(Qi)≤P

(
max

k∈[1,...,K]

MSEk

γk

)
. (11)

In order to solve Problem 1, we present the following theorem.

Theorem 1: For the optimal covariance matrices Q∗
1, ..., Q

∗
K with∑K

l=1 tr(Q∗
l ) ≤ P and maxk∈[1...K]

MSEk(Q∗)
γk

= r we have

1.
∑K

k=1 tr(Q∗
k) = P and

2. MSE1(Q∗)
γk

= ... = MSEK(Q∗)
γK

.

Remark: The MSE for the k-th user can be written with (6) as

MSEk = nT − tr
(
A−1/2HkQkH

H
k A−1/2

)
. (12)

Following the arguments in [8], we can balance the terms

uk =
nRtr

(
HkQkH

H
k

)
tr (A)

(13)

using the so called ’trace-balancing’ algorithm.
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3. SINGLE-USER RANGE FOR NORMALIZED SUM MSE

3.1. Characterization of optimality conditions

At low SNR values, the optimal transmission strategy is to have
one single user performing beamforming, i.e. the single user uses
only its largest eigenvalue. Let us order the users with respect to
their largest eigenvalues, i.e. their L2-norm:

||H1||2 ≥ ||H2||2 ≥ ... ≥ ||HK ||2
Next, we provide an algorithm which decides whether it is optimal
to have the user with the best channel transmitting only. Let us
prove the following theorem which characterizes the single-user
region of the MIMO MAC with linear multiuser MMSE receiver

Theorem 2: If user i is not active in the optimum solution then(
HH

i A−2Hi

)T

≤ µI (14)

and if user j is active in the optimum solution then(
HH

j A−2Hj

)T

+ Ψj = µI (15)

with tr(ΨjQj) = 0.

Proof: We sketch the proof by using the Karush-Kuhn-Tucker con-
ditions for the optimization problem in (8). The Lagrange function
for this optimization problem is given by

L(Q1, ..., QK , µ,Ψ1, ..., ΨK) = (16)

tr

((
σ2

nI +
∑K

k=1 HkQkH
H
k

)−1
)
−

∑K
k=1 tr(ΨkQk) + µ

(∑K
k=1 tr(Qk − P

)
.

The first derivative of (17) is given by

δL

δQi
=
(
−HH

i A−1A−1Hi

)T

− Ψi + µI. (17)

The Karush-Kuhn-Tucker conditions which are necessary and suf-
ficient for the optimality of Q∗

1 , ..., Q∗
K are given by

Q∗
i ≥ 0 ∀i ∈ [1...K] (18)

K∑
k=1

tr(Q∗
k) ≤ P (19)

µ

(
K∑

k=1

tr(Q∗
k) − P

)
= 0 (20)

tr(ΨkQ
∗
k) = 0 ∀k ∈ [1...K] (21)

δL

δQi
= 0. (22)

We directly obtain from (21) the following necessary and suffi-
cient condition for the optimum covariance matrices Qi and their
corresponding Lagrange multiplier:

tr(Q∗
i ) > 0 =⇒ Ψi = 0 (23)

tr(Q∗
j ) = 0 =⇒ Ψj > 0 (24)

(23) means that if user i is active, i.e. its transmit covariance matrix
is positive definite, its Langrange multiplier Ψi is equal to the zero
matrix. (24) means that if the user j is not active, i.e. its transmit
covariance matrix is equal to zero, its Langrange multiplier Ψj is
positive definite. From that follows the conditions in (14) and (15).

3.2. Development of algorithm

The Theorem 1 leads us to the following algorithm:

1. Search the user with the best channel, i.e. with the maxi-
mum L2-norm:

j = arg max
k∈[1...K]

||Hk||2.

2. The eigenvalues of the channel HjH
H
j are named λH

n . Com-
pute the optimum transmission strategy for user j with the
formula for n = 1...nT

pj
n =

(
σ2

n

ν
(λH

n )−1/2 − σ2
n(λH

n )−1

)+

. (25)

from [9].

3. Compute the Langrangian multiplier µ from (15). Note that
the eigenvectors of Ψj , HH

j A−2Hj and Qj are identical.
Hence, we write for (15) diagonal matrices

DΨ + DHH
j A−2Hj

= µI.

The diagonal entries in (26) of HH
j A−2Hj which corre-

spond to the eigenvalues of Qj in which power is allocated

are given by λH
k

(σ2
n+pkλH

k
)2

and are all equal. Therefore, we

set

µ =
λH

k

(σ2
n + pkλH

k )2
(26)

for all k ∈ {κ : pκ > 0}.

4. Next, we compute the Lagrangian multiplier Ψj with µ
from (26). For all k ∈ {κ : pκ > 0} we set Dk

Ψ = 0.
For all k ∈ {κ : pκ = 0} we choose

Dk
Ψ = µ − λH

k

(σ2
n + pkλH

k )2
. (27)

5. Finally, we test for the second largest user l with

l = arg max
l∈[1...K]/j

||Hl||2

if the condition (14) is fulfilled with the Lagrangian mutli-
plier µ from (26):

Single-user region if HH
l A−2Hl ≤ µI. (28)

Remark: The algorithm is deterministic because the compu-
tation in each step is unique. The optimal single-user power al-
location in (25) is unique. The determination of the Lagrangian
multiplier µ in (26) is unique, too. The Lagrangian multiplier Ψj

results directly in (27). Therefore, for given channel realization
and SNR, the algorithm can directly decide whether we are in the
single-user region or not.
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Fig. 2. Optimum number of users and optimum power allocation
for strongest user: K = 2, nT = 2, nR = 2, one channel realiza-
tion

4. NUMERICAL SIMULATIONS

In figure (2), we show a simulation result for a two user MIMO
MAC with two transmit antennas each and a base station with four
receive antennas. In figure (2), for the strongest user we show the
optimum power allocation depending on the SNR and the optimum
number of users. For low SNR values only the strongest user is
transmitting. The single-user region reaches up to 1 dB. At this
point the second strongest user is allowed to transmit.

In figure (3), we show the average number of active users for
two users each with two transmit antennas and a base station with
various number of receive antennas. We average the number of ac-
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Fig. 3. Average number of active users: K = 2, nT = 2, nR =
{2, 3, 4, 5}

tive users over 1000 channel realizations. In figure (3), we observe
that the more receive antennas we have the lower is the single-user
range.

Furthermore, for two receive antennas and SNR approaching
infininty, the average number of active users is less than two. I.e.
less than two users are supported on average.

In figure (4), we show the impact of the number of users on
the average number of active users as a function of the SNR. From
figure (4), we observe that the single-user range decreases as the

number of user increases.
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Fig. 4. Average number of active users: K = {2, 3, 4, 5, 10},
nT = 2, nR = 2

5. CONCLUSIONS

In this work, we study the multiuser MIMO MAC with a linear
MMSE multiuser detector at the base station. We compute the
average sum MSE depending on the transmit covariance matrices
of the users. We formulate the optimization problem of minimiz-
ing the sum MSE. Furthermore, we analyze the single-user range,
i.e. the SNR range in which only the strongest user transmits. We
propose an algorithm which easily checks whether the single-user
strategy achieves the minimum MSE or not. We illustrate all theo-
retical results by numerical simulations.
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