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ABSTRACT

BLAST (Bell Laboratories layered space-time) wireless systems
are multiple-antenna communication schemes which can achieve
very high spectral efficiencies in scattering environments, with no
increase in bandwidth or transmitted power. The most popular
and, by far, the most practical architecture is the so-called verti-
cal BLAST (V-BLAST). The signal detection algorithm of a V-
BLAST system is computationally very intensive. If the number
of transmitters is M and is equal to the number of receivers, this
complexity is proportional to M4 at each sample time. In this pa-
per, we propose a simple and very efficient algorithm that reduces
the complexity by a factor of M .

1. INTRODUCTION

Telatar [1] and Foschini [2] showed that the multipath wireless
channel is capable of huge capacities, provided that the multipath
scattering is sufficiently rich and is properly exploited through the
use of an appropriate processing architecture and multiple anten-
nas (both at transmission and reception). The original architecture
proposed in [2] and called D-BLAST (diagonally-Bell Laborato-
ries layered space-time) is theoretically capable of approaching the
Shannon capacity for multiple transmitters and receivers but it’s
very complex to implement. A simplified version known as ver-
tical BLAST (V-BLAST) was proposed in [3], [4] that can still
achieve a substantial portion of that capacity. For example, the au-
thors in [3] have demonstrated, using a laboratory prototype and
in an indoor environment, spectral efficiencies of 20–40 bps/Hz
at average signal-to-noise ratios ranging from 24 to 34 dB. In the
rest, we will not make any distinctions between the terms BLAST
and V-BLAST.

In a V-BLAST system, a data stream is split into M uncor-
related sub-streams, each of which is transmitted by one of the
M transmitting antennas. The V-BLAST algorithm detects the M
symbols, at the receiver, in M iterations and it is proven in [3] that
the decoding order of this algorithm is optimal from a performance
point of view. However, as it will be shown later, the complexity
required to achieve this performance is very high.

This paper is organized as follows. Section 2 defines the signal
model. In Section 3, we explain in detail the V-BLAST algorithm.
In Section 4, we show how to derive a fast algorithm for BLAST.
Finally, Section 5 evaluates the complexity of different algorithms.

2. SIGNAL MODEL

The BLAST architecture is a multiple-input multiple-output
(MIMO) system where a single user uses a communication link
comprising M transmitting antennas and N receiving antennas in
a flat-fading environment (meaning that the signals are narrow-
band). At the receivers, at the sample time k, we have:

x(k) =
M∑

m=1

h:msm(k) + w(k)

= Hs(k) + w(k), k = 1, 2, ..., K , (1)

where

x(k) = [
x1(k) x2(k) · · · xN (k)

]T

=
[

hH
1: s(k) + w1(k) · · · hH

N :s(k) + wN (k)

]T

is the N-dimensional received vector,

H =




h11 h12 · · · h1M
h21 h22 · · · h2M
...

...
. . .

...

h N1 h N2 · · · h N M




= [
h:1 h:2 · · · h:M

]

=




hH
1:

hH
2:
...

hH
N :




is an N × M complex matrix assumed to be constant for K symbol
periods, vectors hn: and h:m are respectively of length M and N ,

s(k) = [
s1(k) s2(k) · · · sM (k)

]T

is the M-dimensional transmitted vector,

w(k) = [
w1(k) w2(k) · · · wN (k)

]T

is a zero-mean complex additive white Gaussian noise (AWGN)
vector with covariance:

Rww = E{w(k)wH (k)} = σ 2
wIN×N , (2)
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and T and H denote respectively transpose and conjugate trans-
pose of a matrix or a vector.

The transmitted vector s(k) has a total power PT. This power
is held constant regardless of the number of transmitting antennas
M and corresponds to the trace of the covariance matrix of the
transmitted vector:

PT = tr[Rss ] = Constant =
M∑

m=1

σ 2
sm

. (3)

In the rest, we suppose that all the antennas transmit with the same
power:

σ 2
s1

= σ 2
s2

= · · · = σ 2
sM

= σ 2
s ,

so that:

PT = Mσ 2
s . (4)

An original information sequence for wireless transmission is
demultiplexed into M data sequences sm(k), m = 1, · · · , M
(called substreams) and each one of them is sent through a trans-
mitting antenna. These M substreams are assumed to be uncor-
related, this implies that the covariance matrix of the transmitted
vector s(k) is diagonal:

Rss = E{s(k)sH (k)} = σ 2
s IM×M . (5)

We also suppose the following:

• N ≥ M .

• H has full column rank, i.e. rank[H] = M .

3. THE V-BLAST ALGORITHM

In order to detect the transmitted symbols at the receivers, the com-
plex channel matrix H needs to be known. In practice, H is iden-
tified by sending a training sequence (known at the reception) at
the beginning of each burst. The length of this burst is equal to
K = K1 + K2 symbols where the K1 symbols are used for train-
ing and the K2 symbols are the data information. The propagation
coefficients are assumed to be constant during a whole burst, af-
ter which they change to new independent random values which
they maintain for another K symbols, and so on. In the remainder
of this paper, we will not make the distinction between H and its
estimate.

The first step of the V-BLAST algorithm [3] makes use of the
pseudo-inverse of the channel matrix H or the minimum mean-
square error (MMSE) filter G.

Define the error vector signal at time k between the input s(k)

and its estimate:

e(k) = s(k) − y(k) = s(k) − GH x(k). (6)

Now, let us define the error criterion:

J = E{eH (k)e(k)} = tr
[

E{e(k)eH (k)}
]
. (7)

The minimization of (7) leads to the Wiener-Hopf equation:

GH Rx x = Rsx , (8)

where

Rx x = E{x(k)xH (k)} (9)

is the output signal covariance matrix, and

Rsx = E{s(k)xH (k)} (10)

is the cross-correlation matrix between the input and output sig-
nals.

From expression (8), we find that the MMSE filter is:

G =
[
HHH + αIN×N

]−1
H, (11)

where

α = σ 2
w

σ 2
s

. (12)

It can easily be seen that (11) is equivalent to:

G = H
[
HH H + αIM×M

]−1 = HQ. (13)

The second form [eq. (13)] is more useful and more efficient in
practice since M ≤ N and the size of the matrix to invert in (13)
is smaller or equal than the size of the matrix to invert in (11).

Instead of the MMSE filter, we can use directly the pseudo-
inverse of H which is:

GH
PI =

[
HH H

]−1
HH . (14)

The only difference between the expressions G and GPI is that the
first one is “regularized” by a diagonal matrix αIM×M while the
second one is not. This regularization introduces a bias but (13)
gives a much more reliable result than (14) when the matrix HH H
is ill-conditioned and the estimation of the channel is noisy. In
practice, depending on the condition number of the matrix HH H,
we can take a different value for α than the one given in (12). For
example, if this condition number is very high and the SNR is also
high, it will be better to take a higher value for α. Thus, the MMSE
filter can be seen as a biased pseudo-inverse of H.

In the V-BLAST algorithm, the detection of the symbols sm(k)

is done in M iterations. The order in which the components of s(k)

are detected is important to the overall performance of the system.
Let the ordered set

S = {p1, p2, · · · , pM } (15)

be a permutation of the integers 1, 2, · · · , M specifying the order
in which components of the transmitted symbol vector s(k) are
extracted. The first iteration, which is also the initialization, is
performed in three steps (as well as the other iterations):
Step 1: Using the MMSE filter or the pseudo-inverse, we compute:

y(k) = GH x(k). (16)

Step 2: The element of y(k) with the highest SNR is detected. This
element is associated with the smallest diagonal entry of Q for the
MMSE filter (as explained in the next section) or the column of
G having the smallest norm for the pseudo-inverse (zero-forcing)
[3]. If such a column is p1, we get:

ŝ p1(k) = Q [
yp1(k)

]
, (17)

with Q [·] indicating the slicing or quantization procedure accord-
ing to the constellation in use.
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Step 3: Assuming that ŝp1(k) = sp1(k), we cancel sp1(k) from
the received vector x(k), resulting in a modified received vector:

x2(k) = x(k) − ŝp1(k)h:p1 =
∑

m �=p1

h:msm(k) + w(k)

= HM−1sM−1(k) + w(k), (18)

where HM−1 is an N × (M − 1) matrix derived from H by re-
moving its p1-th column and sM−1(k) is a vector of length M − 1
obtained from s(k) by removing its p1-th component.

Steps 1–3 are then performed for components p2, · · · , pM by
operating in turn on the progression of modified received vectors
x2(k), · · · , xM (k). Note that at the m-th iteration, we will obtain
the N × (M − m) matrix HM−m which can be derived from H
by removing m of its columns: p1, · · · , pm . As shown in [3], this
ordering (choosing the best SNR at each iteration in the detection
process) is optimal among all possible orderings.

The arithmetic complexity of the V-BLAST algorithm is very
high. This complexity is in O(N M3) for each sample time k.

4. A FAST V-BLAST ALGORITHM

Here, the matrix G is not computed directly. Since this matrix is
the product of a rectangular matrix of size N × M and a square
matrix of size M × M , the complexity of such a product is propor-
tional to N M2 at each iteration. The algorithm requires M itera-
tions, therefore the complexity is in O(N M3) even if the matrices
are deflated by 1 at each iteration.

Recall that:

G = HR−1, (19)

where

R = HH H + αIM×M . (20)

The covariance matrix of the error signal, e(k) = s(k) − y(k),
is:

Ree = E{e(k)eH (k)} = σ 2
wR−1 = σ 2

wQ. (21)

Clearly, the element of y(k) with the highest SNR is the one with
the smallest error variance, so that:

p1 = arg min
m

qmm , (22)

where qmm are the diagonal elements of the matrix Q = R−1.
The matrix R can be rewritten as follows:

R =
N∑

n=1

hn:hH
n: + αIM×M , (23)

which means that R can be computed recursively in N iterations:

R[l] =
l∑

n=1

hn:hH
n: + αIM×M = R[l−1] + hl:hH

l: , (24)

R[N] = R, R[0] = αIM×M . (25)

Using the Sherman-Morrison formula, Q can also be computed
recursively:

Q[l] = Q[l−1] − Q[l−1]hl:hH
l: Q[l−1]

1 + hH
l: Q[l−1]hl:

. (26)

With the initialization Q[0] = 1
α IM×M , we obtain Q[N] =[

HH H + αIM×M

]−1
. Note that if we start the process at iter-

ation M + 1 with the initialization Q[M] = ∑M
n=1 hn:hH

n: , we

obtain Q[N] =
[
HH H

]−1
. Before going further, it is important

to comment on expression (26). Indeed, it is well known that the
computation of any recursion introduces numerical instabilities be-
cause of the finite precision of the processor units. This instability
occurs only after a very large number of iterations. Fortunately in
this application, the number of iterations to compute Q is limited
by the number of receiving antennas (N), which is rather small; so
in principle we should not expect any particular problem here. In
any case, the numerical stability can be improved by increasing α

at the initialization. Furthermore, as it will become clearer in the
following, we can use any method to compute Q and still have a
very efficient algorithm.

In the proposed algorithm, (26) is computed only one time at
the first iteration. The complexity to compute Q[N] is inO(N M2).
Once Q[N] is computed, it’s easy to determine p1 from (22). Con-
tinuing the process for this first iteration, the input estimate is com-
puted as follows:

yp1(k) =
M∑

m=1

qp1mhH:mx(k), (27)

ŝ p1(k) = Q [
yp1(k)

]
. (28)

The last step (Step 3) is the same as the one for the V-BLAST
algorithm.

For the following iterations, the process is different. We show
that the matrix Q can be deflated recursively. We have:

Q[N] = Q =
[
HH H + αIM×M

]−1 = R−1 (29)

=




hH:1 h:1 + α hH:1 h:2 · · · hH:1 h:M
hH:2 h:1 hH:2 h:2 + α · · · hH:2 h:M

...
...

. . .
...

hH:M h:1 hH:M h:2 · · · hH:M h:M + α




−1

.

After p1 corresponding to the element yp1(k) with the smallest
variance is determined, we can interchange the p1-th and M-th
entries of the transmitted signal s(k) such that the M-th signal is
currently the best estimate. Of course, the indices of the transmit-
ted signals will be tracked after the reordering. Accordingly, the
p1-th and M-th columns of the channel matrix H should be inter-
changed which can be easily done by post-multiplying H with a
permutation matrix Pp1 M . Since(

HPp1 M
)H (

HPp1 M
) + αIM×M

= Pp1 M

(
HH H + αIM×M

)
Pp1 M , (30)

it follows that the rows and columns p1 and M of the matrix R
should be permuted. Equivalently, we can permute the rows and
columns p1 and M of the matrix Q which can easily be seen from(

Pp1 M RPp1 M
)−1 = Pp1 M R−1Pp1 M = Pp1 M QPp1 M . (31)

These permutations will allow us to remove the effect of the chan-
nel h:p1 easily. In this case, we have:

QM =
[

RM−1 vM−1
vH

M−1 βp1

]−1

, (32)
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where

βp1 = hH:p1
h:p1 + α,

vM−1 =
[

hH:1 h:p1 hH:2 h:p1 · · · hH:M−1h:p1

]T
,

RM−1 = HH
M−1HM−1 + αI(M−1)×(M−1).

It can easily be shown that:

QM =
[

T−1
M−1 −T−1

M−1vM−1/βp1

−vH
M−1T−1

M−1/βp1 λp1

]
, (33)

where

TM−1 = RM−1 − vM−1vH
M−1/βp1 (34)

is the Schur complement of βp1 in Q−1
M and λp1 = 1/βp1 +

vH
M−1T−1

M−1vM−1/β2
p1

. Furthermore, from (34) we deduce that:

R−1
M−1 = QM−1 =

[
TM−1 + vM−1vH

M−1/βp1

]−1
(35)

and using the Sherman-Morrison formula, we obtain:

QM−1 = T−1
M−1 − T−1

M−1vM−1vH
M−1T−1

M−1

βp1 + vH
M−1T−1

M−1vM−1
. (36)

Clearly, expression (36) shows that the matrix Q can be deflated
recursively in O(M2) at each iteration. In the general case, we
have:

QM−m = T−1
M−m − T−1

M−m vM−mvH
M−mT−1

M−m

βpm + vH
M−m T−1

M−mvM−m
, (37)

RM−m = HH
M−m HM−m + αI(M−m)×(M−m). (38)

Note that RM−m is not computed but rather easily determined
from RM+1−m by removing its last line and column. Only
RM = R is calculated at the first iteration. The complexity of
the proposed fast V-BLAST algorithm is in O(N M2 + M3). For
N = M , the complexity is reduced by a factor of M compared to
the V-BLAST algorithm.

5. COMPLEXITY EVALUATION

We now look at the computational complexity of the proposed fast
V-BLAST algorithm and compare it to the traditional V-BLAST
and the square-root algorithms [5]. Since the transmitted and re-
ceived signals as well as the channel matrix are complex, all pro-
cessings are conducted upon complex values. Therefore, unless
otherwise specified, multiplications, divisions, and additions refer
to complex operations throughout this section.

For the traditional V-BLAST algorithm, the total number of
multiplications is

9

4
M4 + 4

3
M3 N + 29

6
M3 + 7

2
M2 N + O

(
M2 + M N

)
,

and the total number of additions is

9

4
M4 + 4

3
M3 N + 25

6
M3 + 7

2
M2 N + O

(
M2 + M N

)
.

If the numbers of transmitting and receiving antennas are the same,
i.e. M = N , then the total numbers of multiplications and addi-

tions are 43
12 M4+ 25

3 M3+O
(

M2
)

and 43
12 M4+ 23

3 M3+O
(

M2
)

,

respectively.
In the square-root algorithm for V-BLAST decoding, the

square-root matrix Q1/2
M−m of QM−m is recursively computed

by using Householder transformations. Applying a Householder
transformation to a given matrix with respect to one of its col-
umn/row vector requires equal numbers of multiplications and
additions. As given in [5], the square-root algorithm requires
2
3 M3+7M2 N +2M N2 +O

(
M2 + M N

)
multiplications and ad-

ditions. If M = N , then these numbers turn to 29
3 M3 + O

(
M2

)
.

Note that square-root operations were omitted in the evaluation.
For the proposed fast V-BLAST algorithm, the total number

of multiplications is

2

3
M3 + 3M2 N + O

(
M2 + M N

)
,

and the total number of additions is
1

2
M3 + 5

2
M2 N + O

(
M2 + M N

)
.

If M = N , then the proposed fast V-BLAST algorithm requires
11
3 M3 + O

(
M2

)
multiplications and 3M3 +O

(
M2

)
additions.

Therefore, the speedups of the proposed algorithm over the tradi-
tional V-BLAST in the number of multiplications and additions are
43M/44 + 25/11 ≈ M + 2.3 and 43M/36 + 23/9 ≈ 1.2M + 2.6,
respectively. Compared to the square-root algorithm, the proposed
algorithm is also more efficient and the speedups in the number of
multiplications and additions are 29/11 ≈ 2.6 and 29/6 ≈ 4.8,
respectively.

Note that one complex multiplication/division takes 6 floating-
point operations (flops) and one complex addition/subtraction
needs 2 flops. Therefore, the flop counts of the traditional V-
BLAST and the square-root algorithms are approximately 43

42 M +
49
21 ≈ M + 2.3 times and 58/21 ≈ 2.76 times, respectively, more
than that of the proposed algorithm in the case of M = N .
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