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ABSTRACT is not long enough, the orthogonality of the sub-carriers is

lost and this causes both inter-carrier interference (ICI) and
inter-symbol interference (I1SI).
A well-known technique to combat the ICI/ISI caused

Time-domain equalization is crucial in reducing inter-carrier
and inter-symbol interference in multicarrier systems. A
channel shortening time-domain equalizer (TEQ), which is . . . )
N ' ' . by an inadequate CP length is the use of a time-domain
a finite impulse response (FIR) filter, placed in cascade with equalizer (TEQ). The TEQ is a finite impulse response fil-

the channel produces an effective impulse response that i
shorter than the channel impulse response. We show that ﬁ?er that shortens the channel so that the delay spread of the

nite length minimum mean squared error (MMSE) and max- combined channel-equalizer |mpu!se response is not longer
imum shortening SNR (MSSNR) TEQs are approximately than. thle CP(Ij(_ancgj;t_h. Jhﬁ TEQ desl|gn plrgbl_?rr? has been ex-
symmetric, and infinite length MSSNR TEQs with a unit tensively studied in the literature [1] — [10]. 'S paper ana-
norm TEQ (UNT) constraint are exactly symmetric. A sym- lyzes the MMSE [1] and MSSNR [4] TEQ design methods.
metric TEQ halves FIR implementation complexity, enables
the frequency-domain equalizer and TEQ to be trained in 2. SYSTEM MODEL AND NOTATION
parallel, and exhibits only a small loss in bit rate over non-
symmetric TEQs. In addition, a symmetric MSSNR-UNT  the multicarrier system model is shown in Fig. 1. Each
TEQ reduces training computational complexity by a factor piack of bits is divided intodl bins, and each bin is viewed
of 4 and doubles the length of the TEQ that can be designed ¢ 4 QAM signal that will be modulated by a different car-
rier. An efficient means of implementing the multicarrier
1. INTRODUCTION modulation in discrete time is to use an inverse fast Fourier
transform (IFFT). The IFFT converts each bin (which acts
Multicarrier modulation (MCM) technigques such as orthog- as one of the frequency components) into a time-domain
onal frequency division multiplexing (OFDM) and discrete signal. After transmission, the receiver can use an FFT to
multi-tone (DMT) have been receiving increasing attention recover the data within a bit error rate tolerance, provided
in the literature recently, and they have been deployed in nu-that equalization has been performed properly.
merous industry standards. Applications include the wire- In order for the subcarriers to be independent, the con-
less LAN standards IEEE 802.11a and HIPERLANZ; Dig- volution of the signal and the channel must be a circular
ital Audio Broadcast (DAB) and Digital Video Broadcast convolution. Itis actually a linear convolution, so it is made
(DVB) in Europe; and asymmetric and very-high-speed dig- to appear circular by adding a cyclic prefix to the start of
ital subscriber loops (ADSL, VDSL). MCM is attractive due each data block. The cyclic prefix is obtained by prepend-
to the ease with which it can combat channel dispersion,ing the lastv samples of each block to the beginning of the
provided that the channel delay spread is not greater than thdlock. If the CP is at least as long as the channel, then the
length of the cyclic prefix (CP). The cyclic prefix is a copy output of each subchannel is equal to the input times a com-
of the lastr samples of each symbol which is prepended to plex scalar. The signals can then be equalized by a bank
the start of each symbol in order to make the convolution of of complex gains, referred to as a frequency-domain equal-
the data and channel appear periodic. However, if the CPizer (FEQ). If the channel is longer than+ 1, a TEQ is
, _ o needed to shorten the channel. We use the notéijos,
ATI*Thls work was supported in part by NxtWave Communications (now andc = h « w to denote the channel, TEQ, and effective
), Langhorne, PA.
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natural constraint is to maintaifw| = 1 by renormaliz-

— - T ing w after each iteration. A blind, adaptive algorithm was
— T - g proposed in [9], which is a stochastic gradient descent on
— 7 " A lcwant||?, @lthough it leads to a window size ofinstead of
T o v + 1. For these two algorithms, the solution must satisfy

FEQ min (WTAW) subject tow’w = 1. 4)
k:: ﬂ < % - This leads to a TEQ that must satisfy a traditional eigenvec-
= = = 7] tor problem,

- T Aw = \w. (5)

Fig. 1. System model. (I)FFT: (inverse) fast Fourier trans- The solution is the eigenvector corresponding to the small-

form, P/S: parallel to serial, S/P: serial to parallel, CP: add €St €igenvalue. We will refer to the solution ferin (3) as
cyclic prefix, xCP: remove cyclic prefix. the MSSNR solution, and the solution of (5) as the MSSNR

Unit Norm TEQ (MSSNR-UNT) solution.
When the input signal is white and there is no noise,
3. THE TEQ IMPULSE RESPONSE the MMSE design produces the same TEQ as the MSSNR
design [12]. This can be extended to the noisy case to show
This section shows that the MSSNR and MMSE designs of- that the TEQ for the MMSE design must satisfy [13]
ten lead to TEQs with highly symmetric impulse responses.
Section 3.1 reviews MSSNR and MMSE design methods. Bw=\A(A+R,)w, (6)

Section 3.2 shows why symmetry occurs in TEQ impulse where\ is the largest generalized eigenvalue of the matrix

responses, and Section 3.3 analyzes nfinite-engin MSSNFZi (3 4 R, This allows for a uified reatment o

the MSSNR and MMSE TEQ designs.

3.1. The MSSNR and MMSE solutions 3.2. Symmetry in eigenvectors

Consider the maximum shortening SNR (MSSNR) TEQ de- | ¢t 3 pe the square matrix with ones on the cross diagonal,

sign [4]. This technique attempts to maximize the ratio of 5,4 seros elsewhere. Symmetric centrosymmeéttig N
the energy in a window of the effective channel over the en- . .irices are defined as matrices in the set

ergy in the remainder of the effective channel. Delibg;,,
andH,,.;; as in [4], so that,,;,, = H,,;,w Yyields a length Vy={C: c’=C, JCJ=C}. ©)
v+ 1 window of the effective channel, argl,.;; = Hyanw
yields the remainder of the effective channel. The MSSNR Symmetric centrosymmetric matrices of sixex N have

design problem can be stated as [4], [11] exactly [N/2] symmetric eigenvectors andV/2] skew-
symmetric eigenvectors [14]. This result can be extended
max (wTBw) subjecttow’ Aw = 1, (1) to the generalized eigenvector case.
w

Theorem 3.11f A,B € Vi, (so they are symmetric cen-
trosymmetric) andA is invertible, then the eigenvectors of
Hyip. @) (A7'B) can always be chosen to be symmetric or skew-

symmetric. Furthermore, if the eigenvalueg &f~'B) are
Solving (1) leads to a TEQ that satisfies the generalizeddistinct, then all of the eigenvectors will all be symmetric or
eigenvector problem, skew-symmetric.

whereA andB are real, symmetri€.,, x L., matrices,

A= Hgalleallv B= HT

win

Bw — \Aw. A3) Proof: Since(A~'B) is centrosymmetric] (A~'B)J =
A~1B. Thus, ifw is an eigenvector oA ~!B, it satisfies
The solution forw will be the generalized eigenvector cor-

—1 o
responding to the largest generalized eigenvalue (JA BJ) W= Aw,
Iterative and adaptive implementations of the MSSNR AT'BIw) = X (Iw),
approach have also been proposed. In [5], an iterative al- AT'B(=Jw) = A\ (=Jw) (8)

gorithm was proposed which performs a gradient descent of
llcwant||?. Although itis not mentioned in [5], this algorithm ~ where we have made usebd = I. Thus, ifw is an eigen-
needs a constraint to prevent the trivial solution= 0. A vector of (A*lB) with eigenvalue), thenJw and —Jw



0.3 T T — R The MSSNR-UNT TEQ becomes increasingly symmet-
ric for large TEQ lengths, whereas the MSSNR TEQ is ap-
0.25¢ | proximately symmetric for all lengths, but does not display
as strong a trend. Symmetric TEQs can be initialized by
only computing half of the TEQ coefficients. For MSSNR,
MSSNR-UNT, and MMSE solutions, this reduces the prob-
lem from finding an eigenvector (or generalized eigenvec-

| 2
sym

o©

[N

Pw

50'15 tor) of anL,, x L,, matrix to finding an eigenvector (or
g o1 generalized eigenvector) of &, /2] x [ L,, /2] matrix [14].
' This leads to a significant reduction in complexity, at the ex-
pense of throwing away the skew-symmetric portion of the
0.05r1 filter. Reduced complexity algorithms are discussed in Sec-
Wy e B tion 4.

O T 10 o a0 Yet another advantage of a perfectly symmetric TEQ is
length of TEQ that is has a linear phase with known slope. Thus, if the

_ _ _ channel is known, the phase response of the effective chan-
Fig. 2. Energy in the skew-symmetric part over the en- nel is known before the TEQ is designed. This allows the

ergy in the symmetric part of the TEQ. The data was delay- FEQ to be partially trained in parallel with the TEQ.
optimized and averaged over ADSL CSA test loops 1 — 8.

3.3. Infinite length TEQ designs: asymptotic results

are also eigenvectors with the same eigenvalu€hus, for This section examines the limiting behavior Af and B,
a given eigenpai(\, w), we can always force the eigen- and the resulting limiting behavior of the eigenvectors\of
vector to be symmetricw,,, = (w + Jw)/2, or skew-  (j.e. the MSSNR-UNT solution).

symmetric,wske.w = (W — Jw)/2, without changing the

eigenvalue. Theorem 3.2 For a channel convolution matrik and A
If all of the eigenvalues oA ~'B are distinct, then its S 1N (2), .

eigenvectors are unique. Thus, Jw, and—Jw must all li IH7H - Allr =0, (9)

be identical (up to a scalar, such-a$). This requires each Lu—oo  [Allp

w to be either symmetric or skew-symmetric. u where|| - || r denotes the Frobenius norm.

For the channel convolution mat, we haveH"H ¢ ] )
V1., . This suggests that andB may also be iV, since Sketch of proof: Under the assumptions
A =HI H,, andB = HL H,,,, rather tharH"H. AL A> L, >v,

Unfortunately, A and B are not perfectly symmetric cen-
trosymmetric, but they are approximately so. In additian, A2: Ly > A+,

is always invertible when the channel is longer thas 1 we can partitiorH as

[13]. Thus, the eigenvectors & and of A~'B will all be

approximatelysymmetric or skew-symmetric. Furthermore, H, H,p, Hpi O 0

we can replacé\ by (A + R,,) in Theorem 3.1 to obtain H=| 0 Hy; Hy Hzz 0 (10)
similar results for the MMSE case. Oddly enough, the fi- 0 0 Hy: Hy: Hy

nite length MSSNR and MSSNR-UNT TEQs always seem
to be nearly symmetric rather than nearly skew-symmetric
and the point of symmetry is not in the center of the TEQ.
To quantify the symmetry of the MSSNR and MSSNR-
UNT TEQ designs for various parameter values, we com-
puted both TEQs foB < L,, < 200. For each TEQ, we
decomposedv into wy,, andw..,, and then computed
| Wskewl|?/||Wsym . A plot of this ratio is shown in Fig. 2.
The transmission delay in samplés, was determined via a
global search for the MSSNR solution, and the sameas
used for each corresponding MSSNR-UNT solution. The
ratios were computed for Carrier Serving Area (CSA) test B = [0, Hy3, Hyy, Hys,0]7 [0, Hys, Hyy, Hys, 0]
loops 1 through 8 and then averaged. Matlab code to repro-
duce Fig. 2 is available at [15].

The row blocks have heights, (v+1), and(L;,+ L., —v—

' A); and the column blocks have widthA — L), (v + 1),
(Lp —v —1), (v+1),and(L,, — v — A). The sections
[H2,H 1] andH 3 are both lower triangular and contain
the “head” of the channe[Hy 1, Hy2] andHy 5 are both
upper triangular and contain the channel “tatl; andH,
are tall channel convolution matrices, alHg, is Toeplitz.
ThenH,,;, is simply the middle row (of blocks) df, and
H,,.; is the concatenation of the top and bottom rows.

The limiting behavior foB = HZ . H,;, is

win

1>

[O,ﬁg,or [o,ﬁg,o} . 11)



Table 1 shows the achievable bit rate using a 32-tap
TEQ, for the MSSNR method [4] and the proposed sym-
metric MSSNR method. The channels were the eight stan-
dard CSA test loops. The performance loss for the proposed

Table 1. Achievable bit rate (Mbps) for MSSNR and sym-

metric MSSNR designs, using 32-tap TEQs. The channel
has AWGN but no crosstalk. The signal power was 23 dBm
and the noise power was -140 dBm/Hz. The CSA channels

can be obtained at [16].

algorithm ranges from 0.1% (loop 3) to 10% (loop 1), with
an average loss of 3%. For some TEQ lengths (not shown),

Loop # | MSSNR | SYM-MSSNR loss the symmetric TEQs have higher bit rates than their uncon-
CSAl | 12.187 10.921 10.39% strained counterparts. The symmetric MSSNR TEQ design
CSA2 | 13.016 12.493 4.02% has been implemented in the DMT TEQ Toolbox [16].
CSA3 | 11.543 11.529 0.12%
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4. SYMMETRIC TEQ ALGORITHM

We can force a perfectly symmetric even-length TEQ by [11]

rewritingw’ Aw as

A Ap v
As Ay Jv
= VT [All + JAQl + A12J —+ JAQQJ] v,

[VT, VTJ} {
(14)

A

with an analogous definition @. The MSSNR problem is
reduced to

min (VTAV) subject tov’ Bv = 1.

v

(15)

NoteAthatA andB have dimensiong,, x L., whereasA
andB have dimensionsz> x LT We still require a sym-

metric generalized eigendecomposition, but its complexity

has been reduced by a factor of 4.
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