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ABSTRACT

Time-domain equalization is crucial in reducing inter-carrier
and inter-symbol interference in multicarrier systems. A
channel shortening time-domain equalizer (TEQ), which is
a finite impulse response (FIR) filter, placed in cascade with
the channel produces an effective impulse response that is
shorter than the channel impulse response. We show that fi-
nite length minimum mean squared error (MMSE) and max-
imum shortening SNR (MSSNR) TEQs are approximately
symmetric, and infinite length MSSNR TEQs with a unit
norm TEQ (UNT) constraint are exactly symmetric. A sym-
metric TEQ halves FIR implementation complexity, enables
the frequency-domain equalizer and TEQ to be trained in
parallel, and exhibits only a small loss in bit rate over non-
symmetric TEQs. In addition, a symmetric MSSNR-UNT
TEQ reduces training computational complexity by a factor
of 4 and doubles the length of the TEQ that can be designed.

1. INTRODUCTION

Multicarrier modulation (MCM) techniques such as orthog-
onal frequency division multiplexing (OFDM) and discrete
multi-tone (DMT) have been receiving increasing attention
in the literature recently, and they have been deployed in nu-
merous industry standards. Applications include the wire-
less LAN standards IEEE 802.11a and HIPERLAN2; Dig-
ital Audio Broadcast (DAB) and Digital Video Broadcast
(DVB) in Europe; and asymmetric and very-high-speed dig-
ital subscriber loops (ADSL, VDSL). MCM is attractive due
to the ease with which it can combat channel dispersion,
provided that the channel delay spread is not greater than the
length of the cyclic prefix (CP). The cyclic prefix is a copy
of the lastν samples of each symbol which is prepended to
the start of each symbol in order to make the convolution of
the data and channel appear periodic. However, if the CP
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is not long enough, the orthogonality of the sub-carriers is
lost and this causes both inter-carrier interference (ICI) and
inter-symbol interference (ISI).

A well-known technique to combat the ICI/ISI caused
by an inadequate CP length is the use of a time-domain
equalizer (TEQ). The TEQ is a finite impulse response fil-
ter that shortens the channel so that the delay spread of the
combined channel-equalizer impulse response is not longer
than the CP length. The TEQ design problem has been ex-
tensively studied in the literature [1] – [10]. This paper ana-
lyzes the MMSE [1] and MSSNR [4] TEQ design methods.

2. SYSTEM MODEL AND NOTATION

The multicarrier system model is shown in Fig. 1. Each
block of bits is divided intoN

2 bins, and each bin is viewed
as a QAM signal that will be modulated by a different car-
rier. An efficient means of implementing the multicarrier
modulation in discrete time is to use an inverse fast Fourier
transform (IFFT). The IFFT converts each bin (which acts
as one of the frequency components) into a time-domain
signal. After transmission, the receiver can use an FFT to
recover the data within a bit error rate tolerance, provided
that equalization has been performed properly.

In order for the subcarriers to be independent, the con-
volution of the signal and the channel must be a circular
convolution. It is actually a linear convolution, so it is made
to appear circular by adding a cyclic prefix to the start of
each data block. The cyclic prefix is obtained by prepend-
ing the lastν samples of each block to the beginning of the
block. If the CP is at least as long as the channel, then the
output of each subchannel is equal to the input times a com-
plex scalar. The signals can then be equalized by a bank
of complex gains, referred to as a frequency-domain equal-
izer (FEQ). If the channel is longer thanν + 1, a TEQ is
needed to shorten the channel. We use the notationh, w,
andc = h ? w to denote the channel, TEQ, and effective
channel impulse responses, respectively; andLw denotes
the TEQ length.
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Fig. 1. System model. (I)FFT: (inverse) fast Fourier trans-
form, P/S: parallel to serial, S/P: serial to parallel, CP: add
cyclic prefix, xCP: remove cyclic prefix.

3. THE TEQ IMPULSE RESPONSE

This section shows that the MSSNR and MMSE designs of-
ten lead to TEQs with highly symmetric impulse responses.
Section 3.1 reviews MSSNR and MMSE design methods.
Section 3.2 shows why symmetry occurs in TEQ impulse
responses, and Section 3.3 analyzes infinite-length MSSNR
and MMSE TEQ designs.

3.1. The MSSNR and MMSE solutions

Consider the maximum shortening SNR (MSSNR) TEQ de-
sign [4]. This technique attempts to maximize the ratio of
the energy in a window of the effective channel over the en-
ergy in the remainder of the effective channel. DefineHwin

andHwall as in [4], so thatcwin = Hwinw yields a length
ν+1 window of the effective channel, andcwall = Hwallw
yields the remainder of the effective channel. The MSSNR
design problem can be stated as [4], [11]

max
w

(
wT Bw

)
subject towT Aw = 1, (1)

whereA andB are real, symmetricLw × Lw matrices,

A = HT
wallHwall, B = HT

winHwin. (2)

Solving (1) leads to a TEQ that satisfies the generalized
eigenvector problem,

Bw = λAw. (3)

The solution forw will be the generalized eigenvector cor-
responding to the largest generalized eigenvalueλ.

Iterative and adaptive implementations of the MSSNR
approach have also been proposed. In [5], an iterative al-
gorithm was proposed which performs a gradient descent of
‖cwall‖2. Although it is not mentioned in [5], this algorithm
needs a constraint to prevent the trivial solutionw = 0. A

natural constraint is to maintain‖w‖ = 1 by renormaliz-
ing w after each iteration. A blind, adaptive algorithm was
proposed in [9], which is a stochastic gradient descent on
‖cwall‖2, although it leads to a window size ofν instead of
ν + 1. For these two algorithms, the solution must satisfy

min
w

(
wT Aw

)
subject towT w = 1. (4)

This leads to a TEQ that must satisfy a traditional eigenvec-
tor problem,

Aw = λw. (5)

The solution is the eigenvector corresponding to the small-
est eigenvalue. We will refer to the solution forw in (3) as
the MSSNR solution, and the solution of (5) as the MSSNR
Unit Norm TEQ (MSSNR-UNT) solution.

When the input signal is white and there is no noise,
the MMSE design produces the same TEQ as the MSSNR
design [12]. This can be extended to the noisy case to show
that the TEQ for the MMSE design must satisfy [13]

Bw = λ (A + Rn)w, (6)

whereλ is the largest generalized eigenvalue of the matrix
pair (B, (A + Rn)). This allows for a unified treatment of
the MSSNR and MMSE TEQ designs.

3.2. Symmetry in eigenvectors

Let J be the square matrix with ones on the cross diagonal,
and zeros elsewhere. Symmetric centrosymmetricN × N
matrices are defined as matrices in the set

VN = {C : CT = C, JCJ = C}. (7)

Symmetric centrosymmetric matrices of sizeN × N have
exactly dN/2e symmetric eigenvectors andbN/2c skew-
symmetric eigenvectors [14]. This result can be extended
to the generalized eigenvector case.

Theorem 3.1 If A,B ∈ VLw (so they are symmetric cen-
trosymmetric) andA is invertible, then the eigenvectors of(
A−1B

)
can always be chosen to be symmetric or skew-

symmetric. Furthermore, if the eigenvalues of
(
A−1B

)
are

distinct, then all of the eigenvectors will all be symmetric or
skew-symmetric.

Proof: Since
(
A−1B

)
is centrosymmetric,J

(
A−1B

)
J =

A−1B. Thus, ifw is an eigenvector ofA−1B, it satisfies
(
JA−1BJ

)
w = λ w,

A−1B (Jw) = λ (Jw) ,

A−1B (−Jw) = λ (−Jw) (8)

where we have made use ofJJ = I. Thus, ifw is an eigen-
vector of

(
A−1B

)
with eigenvalueλ, thenJw and−Jw
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Fig. 2. Energy in the skew-symmetric part over the en-
ergy in the symmetric part of the TEQ. The data was delay-
optimized and averaged over ADSL CSA test loops 1 – 8.

are also eigenvectors with the same eigenvalueλ. Thus, for
a given eigenpair(λ,w), we can always force the eigen-
vector to be symmetric,wsym = (w + Jw)/2, or skew-
symmetric,wskew = (w − Jw)/2, without changing the
eigenvalue.

If all of the eigenvalues ofA−1B are distinct, then its
eigenvectors are unique. Thus,w, Jw, and−Jw must all
be identical (up to a scalar, such as−1). This requires each
w to be either symmetric or skew-symmetric.

For the channel convolution matrixH, we haveHT H ∈
VLw . This suggests thatA andB may also be inVLw , since
A = HT

wallHwall andB = HT
winHwin, rather thanHT H.

Unfortunately,A andB are not perfectly symmetric cen-
trosymmetric, but they are approximately so. In addition,A
is always invertible when the channel is longer thanν + 1
[13]. Thus, the eigenvectors ofA and ofA−1B will all be
approximatelysymmetric or skew-symmetric. Furthermore,
we can replaceA by (A + Rn) in Theorem 3.1 to obtain
similar results for the MMSE case. Oddly enough, the fi-
nite length MSSNR and MSSNR-UNT TEQs always seem
to be nearly symmetric rather than nearly skew-symmetric,
and the point of symmetry is not in the center of the TEQ.

To quantify the symmetry of the MSSNR and MSSNR-
UNT TEQ designs for various parameter values, we com-
puted both TEQs for3 ≤ Lw ≤ 200. For each TEQ, we
decomposedw into wsym andwskew, and then computed
‖wskew‖2/‖wsym‖2. A plot of this ratio is shown in Fig. 2.
The transmission delay in samples,∆, was determined via a
global search for the MSSNR solution, and the same∆ was
used for each corresponding MSSNR-UNT solution. The
ratios were computed for Carrier Serving Area (CSA) test
loops 1 through 8 and then averaged. Matlab code to repro-
duce Fig. 2 is available at [15].

The MSSNR-UNT TEQ becomes increasingly symmet-
ric for large TEQ lengths, whereas the MSSNR TEQ is ap-
proximately symmetric for all lengths, but does not display
as strong a trend. Symmetric TEQs can be initialized by
only computing half of the TEQ coefficients. For MSSNR,
MSSNR-UNT, and MMSE solutions, this reduces the prob-
lem from finding an eigenvector (or generalized eigenvec-
tor) of an Lw × Lw matrix to finding an eigenvector (or
generalized eigenvector) of adLw/2e×dLw/2ematrix [14].
This leads to a significant reduction in complexity, at the ex-
pense of throwing away the skew-symmetric portion of the
filter. Reduced complexity algorithms are discussed in Sec-
tion 4.

Yet another advantage of a perfectly symmetric TEQ is
that is has a linear phase with known slope. Thus, if the
channel is known, the phase response of the effective chan-
nel is known before the TEQ is designed. This allows the
FEQ to be partially trained in parallel with the TEQ.

3.3. Infinite length TEQ designs: asymptotic results

This section examines the limiting behavior ofA andB,
and the resulting limiting behavior of the eigenvectors ofA
(i.e. the MSSNR-UNT solution).

Theorem 3.2 For a channel convolution matrixH andA
as in (2),

lim
Lw→∞

‖HT H−A‖F

‖A‖F
= 0, (9)

where‖ · ‖F denotes the Frobenius norm.

Sketch of proof: Under the assumptions

A1: ∆ > Lh > ν,

A2: Lw > ∆ + ν,

we can partitionH as

H =




H1 HL2 HL1 0 0
0 HU3 HM HL3 0
0 0 HU1 HU2 H2


 (10)

The row blocks have heights∆, (ν+1), and(Lh+Lw−ν−
∆); and the column blocks have widths(∆−Lh), (ν + 1),
(Lh − ν − 1), (ν + 1), and(Lw − ν − ∆). The sections
[HL2,HL1] andHL3 are both lower triangular and contain
the “head” of the channel,[HU1,HU2] andHU3 are both
upper triangular and contain the channel “tail,”H1 andH2

are tall channel convolution matrices, andHM is Toeplitz.
ThenHwin is simply the middle row (of blocks) ofH, and
Hwall is the concatenation of the top and bottom rows.

The limiting behavior forB = HT
winHwin is

B = [0,HU3,HM ,HL3,0]T [0,HU3,HM ,HL3,0]
4
=

[
0,H

T

3 ,0
]T [

0,H
T

3 ,0
]
. (11)
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Table 1. Achievable bit rate (Mbps) for MSSNR and sym-
metric MSSNR designs, using 32-tap TEQs. The channel
has AWGN but no crosstalk. The signal power was 23 dBm
and the noise power was -140 dBm/Hz. The CSA channels
can be obtained at [16].

Loop # MSSNR SYM-MSSNR loss
CSA1 12.187 10.921 10.39%
CSA2 13.016 12.493 4.02%
CSA3 11.543 11.529 0.12%
CSA4 11.696 11.431 2.27%
CSA5 12.120 11.800 2.64%
CSA6 10.995 10.798 1.79%
CSA7 10.978 10.880 0.89%
CSA8 10.294 9.956 3.28%

As Lw and∆ increase, the only change toB is the size of
the zero matrices. It can be shown that

‖B‖2F = ‖H3H
T

3 ‖2F ≤ ‖h‖42 · (ν + Lh)2 , (12)

whereLh is the channel length.
SinceA = HT

wallHwall, it becomes a5 × 5 block ma-
trix, with A1,1 = HT

1 H1 andA5,5 = HT
2 H2. Thus,

‖A‖2F ≥ ‖HT
1 H1‖2F + ‖HT

2 H2‖2F
≥ ‖h‖42 · (Lw − Lh − ν) . (13)

Noting thatB = HT H−A, taking the ratio of (12) to (13)
and taking the limit completes the proof.

Theorem 3.2 suggests (heuristically) that in the limit, the
eigenvectors ofA (the MSSNR-UNT solution) converge to
the eigenvectors ofHT H. SinceHT H ∈ VLw , its eigen-
vectors are symmetric or skew-symmetric.

4. SYMMETRIC TEQ ALGORITHM

We can force a perfectly symmetric even-length TEQ by
rewritingwT Aw as

[
vT ,vT J

] [
A11 A12

A21 A22

] [
v
Jv

]

= vT [A11 + JA21 + A12J + JA22J]︸ ︷︷ ︸
Â

v,
(14)

with an analogous definition of̂B. The MSSNR problem is
reduced to

min
v

(
vT Âv

)
subject tovT B̂v = 1. (15)

Note thatA andB have dimensionsLw × Lw, whereasÂ
andB̂ have dimensionsLw

2 × Lw

2 . We still require a sym-
metric generalized eigendecomposition, but its complexity
has been reduced by a factor of 4.

Table 1 shows the achievable bit rate using a 32-tap
TEQ, for the MSSNR method [4] and the proposed sym-
metric MSSNR method. The channels were the eight stan-
dard CSA test loops. The performance loss for the proposed
algorithm ranges from 0.1% (loop 3) to 10% (loop 1), with
an average loss of 3%. For some TEQ lengths (not shown),
the symmetric TEQs have higher bit rates than their uncon-
strained counterparts. The symmetric MSSNR TEQ design
has been implemented in the DMT TEQ Toolbox [16].
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