NEW METHODS FOR HANDLING THE RANGE DEPENDENCE OF THE CLUTTER
SPECTRUM IN NON-SIDELOOKING MONOSTATIC STAP RADARS

Fabian D. Lapierre (Research Fellow), Marc Van Droogenbroeck and Jacques G. Verly

University of Liege, Department of Electrical Engineering and Computer Science
Sart-Tilman, Building B28, B-4000 Liege, Belgium
{ F.lapierre, M.VanDroogenbroeck, Jacques.Verly}@ulg.ac.be

ABSTRACT vectorv, and thez-axis points vertically up. The linear array-
. . . antenna is located in thier, y)-plane and makes an anglewith
We address the problem of detecting slow-moving targets using arespect to the-axis. S is located at “cone” angles; and¢ with

non-sideloking monostatic space-time adaptive processing (STAP)respect to the--axis and the antenna axis, respectively. The range
radar. The construction of optimum weights at each range implies i s the distance betweeh and S.

the estimation of the clutter covariance matrix. This is typically
done by straight averaging of neighboring data snapshots. The
range-dependence of these snapshots generally results in poor per-
formance. We present two new methods that handle the range-
dependence by exploiting the geometry of the direction-Doppler
curves.

antenna

1. INTRODUCTION

Space-time adaptive processing (STAP) radars are used to de-
tect slow-moving targets [3]. STAP relies on the transmission of a
train of coherent pulses, the echos of which are received on a linear
array-antenna. In monostatic (MS) radar configurations, the trans-
mitter and the receiver are colocated. In sidelooking (SL) config-
urations, the antenna is parallel to the radar velocity vector. Prior
research has mostly focused on SL MS configurations [3, 6]. Here,  Fig. 1. Elements of a canonical MS radar configuration.
we consider non-SL MS configurations.

The construction of the adaptive weights used for the optimal
rejection of clutter at any given range implies the estimation of
a clutter-plus-noise covariance matrix using data at neighboring 3. DIRECTION-DOPPLER (DD) CURVES

ranges. In STAP, clutter is best described in terms of a 2D power .

spectral density (PSD) showing the distribution of expected power A radar should provide at least three parameters for each scat-
as a function of spatial and Doppler frequencies. These maps ex{€rer of interest: the angular positign the rangefs and the

hibit a clutter ridge, the shape of which changes with changing €ative velocityv,. These parameters can be computed from
range for all non-SL MS configurations. This range-dependencethree other parameters that can be extracted from the radar re-

creates major problems in the estimation of the covariance matrix, lUMs: (1)_The spatial fLequen(;y (r)]f tumvgpatterlrw anEg the an'
Two approaches have been proposed so far to deal with this©"a&/fs = cos&/A, where), is the carriewavelength; (2) The
roundtrip delay,r = 2R, /c, wherec is the speed of the light;

range-dependence. The "Doppler warping" method [1] works wel (3) The Doppler frequencyf,, which for a stationary scatterer

in nearly-SL MS configurations. The “scaling method” [4] works h lutten is ai b — 9 % wh is th
fairly well in all non-SL MS configurations, but can only exploit (such as clutter) is given bj; = 2vg coséa/A., wherevp is the
igned) speed ak along thex-axis.

data at ranges greater than the range of interest. These methoo@ N . .
are sensitive to uncertainties on the antenna crab @nglbe new In STAP, it is instructive to map all stationary scatterers at a
given R; on an(fs, fa) graph. The resulting locus is called a

methods work for all ranges. The first assumes thist known. A : ) )

The second works evendfis unknown. dlrectlop-DoppIer (DD) curve. The graphs axes are typlcally
labelled in terms of the normalized spatial and Doppler frequencies
vs = (Ae/2) fs andvg = (Ac/4vr) f4. Figure 2 shows a number

2. MONOSTATIC GEOMETRY of such graphs, each corresponding to a diffefeniVithin each
graph in Fig. 2, each curve corresponds to a diffeféntNote that
Figure 1 shows a canonical MS configuration, with a rallar  the DD curves are range-dependent for all MS configurations other

(typically airborne or spaceborne) and a scattéréarget or clut- than SL § = 0). The only other parameter influencing the shape

ter patch). The origin of the coordinate systémy, z) is chosen of the curves izr. The parameter that runs along each curve is

to coincide withR. The z-axis is aligned with the radar velocity  the anglep of Fig. 1.
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whereR = E{y yT} is the sum of the covariance matricBs =

Ey, yT} for the clutter and? = E{y y' 1 =1Ifor the noise,
o assumed to be spatially and temporaTIy white.” (Jammers are not
Vg considered here.) In practic& must be estimated for eadh.

The maximume-likelihood estimatdi for range (gate} is [5]

30 deg.

I/dVD

0 = 0deg.

)

ZR with R(k) = y(k)y'(k), (5)

keSl

whereS; is the set of surrounding-snapshots indigedefined by
[—0.5(N,—1) < k < 14+0.5(N;—1), N; is the size of5; andy (k)
andR(k) the snapshot and the sample covariance matrix for range
k. E(Z) is unbiased only if the clutter ridge is range-independent.
This happens only for SL configurations.

The performance of a processor using arbitrary weiabts
measured by the signal-to-interference-plus-noise ratio loss

Vq vq

0 = 60 deg.
4 = 90 deg.
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Fig. 2. Example DD curves for different combinations of crab SINRy  (w' Rw)(vfv)
angles) and rangesR; (15, 25 and50 km); vg = 90 m/s.

where SINR is the SINR in the absence of clutter. Values of
SINR;, range from the noise-to-clutter ratio to one. In practice,
4, OPTIMUM PROCESSOR processor performance is degraded by estimation losses and by the
fact that theR(k)’s in Eq. (5) are range-dependent. The goal of
R transmitsM coherent pulses. The signals received at each of the new compensation methods described below is to eliminate or

N antenna-array elements are sampled, for each alfhmulses, reduce the losses due to this range-dependence.
at a series of discrete ranges, called range gates. We treat these
samples in space, time and range as a sequence in rafgexaV 5. NEW RANGE COMPENSATION METHODS
data arrays called “snapshots”. Edehx N snapshot correspond-
ing to a single scatterer (target or clutter patch) with parameters The new methods replace Eq. (5) by
vy and R, can be expressed as &N x 1 vector [6]
y(’fs:l’d):ﬁry(”s:l’d): ZTk [: :| ’
whereg, is a factor obtained from the radar equation aiid;, v4) kgsl
is the M N x 1 steering vector where theT} [ . |'s are designed to compensate for the range-depen-
dence and to approach the performance of the OP.
v(vs; va) = b(va) ® a(vs), @ Because of stationarityR is Toeplitz-Block-Toeplitz and thus
where® is the Kronecker product and(v;) andb(v,) are the has redundant elements. It is thus possible to replacdfhe x
N x 1 spatial and/ x 1 temporal steering vectors given by MN matrix R by a (2N — 1) x (2M — 1) matrix L entirely
B B equivalent taR. In fact, I is the matrix representation of the 2D
a(vs) = (1...e/%men 2Nyt 2 autocorrelation functiod,,, wherey[n, m] is the 2D sequence
b(rg) = (1...e2™am  gi?mva(M-INT 3) representation ofy. Note that the dimensions &f correspond to

. ) space and time. Focusing @fk)’s with corresponding transfor-
The M N x 1 clutter snapshogc(us, vq) is found by integrat- mationsT?[.], we have =
ing y(vs,va) over the isorange curve defined by the intersection,
parameterized by, of the isorange sphere with the ground, f Z T [ ]
: k = .

2 kES[
) = [ 5:(6) p0(8),wat))
5.1. Exact range-compensation (ERC) method

Slnceﬁc(qb) is a random procesg_ is a random vector. We
assume it is stationary. To find the power spectral density (PSD) The parameter§ influencing the shape of the DD curves are
associated W|tlfy we use spectral estimation methods. The min- vr, 6 and R;. Here, we assume thak and¢é are known. Of
imum variance estimator (MVE) works well in STAP [3]. Clutter ~course, the various values & are also known, since we select
PSDs show a concentration of energy along a particular curve inthe range gates. The designfgf . ] is based on the fact that all the
the PSD array. The support of this “clutter ridge” is in direct cor- non-SL DD curves for a given configuration are scaled versions of
respondence with the related DD curve. each other. In the exact range-compensation (ERC) method, we

The weights of the optimum processor (OP) providing optimum first determine, for each rangg the scaling transformation
clutter rejection are given by the/ IV x 1 vector [2]

wopt (vs, va) = R~ 0(vs, va), @ ( Zd% ) = ( o ?w) ) ( 522'13 ) ©)



that scales thév,, v4)-axes of the DD curve at rangdeto bring it 5.1.2. Example
into registration with the DD-curve at the reference rahdghus,
thev,, v/, at rangek correspond exactly to the,, v, at rangel.
The scale factors in Eqg. (6) can be determined exactly from the

The desired®’ (k) can easily be reconstructed frd(k). Fig-
ure 4 shows the MVE ofR(k) (before compensation) and the

geometry. For a flat earth at heigHt, we find MVE of R’/ (k) (after compensation).
= = — 2 - 2 PSD PSD
S (k) = Sa(k) = /1 = (H/Rs (0)*/ /1 = (H/Bs () ’(7) before compensation after compensation

whereR, (i) is the true range corresponding to range gat€he

transformation is then applied, not to the DD curve plots, but to
the corresponding PSDs. The main processing steps are shown it -
Fig. 3 and are now described.
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L L Fig. 4. Effect of ERC-designed transformati@| . ].
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P ittty R 5.2. Blind range-compensation (BRC) method
ED . Peak L . ! . ) ] ) )
28 | lextraction ) 1 | SN '”terpo'at'°’|—f In practice, we can assume that is known, in particular if
8 S € ! ! | . . .
ggs o ' 1 ! the processing is done d®. However, the anglé is not generally
a = L_RsCe) | _ . | BO_ H known with accuracy, especially in the presence of lateral wind and
77777777777777 — wind gusts. The blind range-compensation (BRC) method does

Parameteré not require that be known. The BRC method is build on top of

the ERC method, as shown in Fig. 5. The new processing step is
the estimation of the parametd@si.e.,d in the present case. The
Fig. 3. Processing steps of the ERC method. new processing steps are as follows.

L(k) L(k)’

5.1.1. Processing steps

| Parameters
| estimation

Zero padding (if required): Special care is required for ranges
k < [. In these cases, the ultimate scaling of the PBDOs a
dilation. This implies a contraction in the inverse Fourier domain,
i.e., of . To allow for this contraction, we must increase the size ;
(2N —1) x (2M —1) of T by factors ofSs andS,; in thev;s andvy [ 2 i
dimensions, respectively. This expansion is performed using zero™ ~ ~ [ 777 B e w !
padding. Of course, no padding is done for> I. The output is (

denoted b)gp, whether it is padded or not.

Fourier transform: The FFT ofgp gives the PSCP.

Peak extraction (I): Our goal is to dilate or contract (as required)

the clutter ridge inP. To avoid scaling points that are outside Fig. 5. Processing steps of the BRC method

the clutter ridge or on its sidelobes, we find the position of the

significant peaks i?. We can easily track these peaks down along Fourier transform: The FFT ofT gives the PSP from L. (No

the theorical DD curve since the configuration is known exactly. padding is performed here.)

Scaling: First, we computeS; and S; according to Eq. (7).  Peak extraction (I11): We need to find the most significant peaks
Then, we compute the new positi¢t (k), v;(k)) of the extracted  in P. However, since is not known initially, we cannot use the
peaks. The original peak intensities are assigned to the nearest pix:peak extraction” algorithm of Fig. 3. Instead, we use a thresh-

Parameter§

elsinP’. olding algorithm. This algorithm uses the histogram of the peak
Interpolation: Whenk < [, linear interpolation is performed to  amplitudes to find the optimal threshold. Figure 6(b) shows a typ-
ensure the “continuity” of the dilated ridge . ical example of such a histogram. Not surprisingly, the histogram
Inverse Fourier transform: The IFFT of the PSP’ givesz;. is bimodal. The high intensities (on the right) correspond to the

ridge and the low intensities (on the left) to the rest of the values
) , ; , ] in P, some of which correspond to the sidelobes of the FFT. To
the desired’. Thus, we must windoW' ' to recover the desired  jqeniify the peaks, we need to find the threshold that best sepa-
2N —-1)x (2M —1) T rates the two lobes of the histogram. Here, this is done by taking

Windowing: If k& < I, g; is larger by a factorSs x Sy than



the first bin for which the number of occurrences observed is less
than five percent of the maximum number of occurences. More

6. PERFORMANCE COMPARAISON

sophisticated algorithms could be used if necessary. The resulting Figure 7 compares the performances of the ERC method to

thresholded Fourier transform is shown in Fig. 6(c).
Curve fitting: In MS configurationsy is the only unknown pa-

those of the straight averaging (SA) technique and the OP. ERC

is much better than SA and nearly as good as OP. Fig. 7 also com-

rameter. However, the parameter estimation problem can be for-pares ERC to BRC (and OP). BRC is nearly as good as RC in

mulated in term of a general vect@rof unknown parameter®

this particular case. Similar performance is achieved with direc-

is found using the position of the detected peaks. This is a fitting tive sensors.

problem: we have the equation of the parametric DD curve and a

set of experimental point&s (5),va(j)). The optimum value of
0 is found by minimizing the MSE given by

where N, is the number of detected peak&(, P) is the dis-
tance between curv@ and pointP. C(8) is the DD curve cor-
responding tof. Its equation isv? + v + —2vsvycos8 =
0.25sin” §(1—(H/R;)?). Using samplegvs (5), va(4)), we con-
struct an overdetermined systefnz = b, where

20, (0) 74(0) 1(1— (H/R.)%)

Wo(Ny — ) wa(N, = 1) L(1— (H/R,)?)
(2(0) + v3(0) ... VAN, — 1) + v3(N, — 1)),

z = (cosé sinzé)T.

IS,]
I

The least-mean-square solutisp is

z, = (ATA) ' A%b.

Note that we have to treabs § andsin® § as distinct unknowns.
Among the two values aof,

01 = arccos(z,(0)) and d» = 4/arcsin(z,(1)),

we choose the one with the smallest residue.
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Fig. 6. Peak-extraction algorithm used for parameter estimation in

the BRC method.
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Fig. 7. Performance comparaison of ERC, BRC, SA and OP meth-
ods. Graphs show slice of the SINRitv; = 0.

7. CONCLUSION

We have proposed two new methods for compensating the
range-dependence of PSDs in non-sidelooking monostatic STAP.
Whereas the ERC method assumes that the configuration param-
eters are known, the BRC method estimates the unknown param-
eters § in MS configurations) prior to applying the ERC method.
The ERC and the BRC methods provide near optimal performance.
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