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ABSTRACT

In this paper, we derive a lower bound on the MSEmatrix of
training-based channel estimators for MIMO systems over
fast-varying fading channels. To this end, we consider an
ideal estimator that is able to estimate the long-term fea-
tures of the channel (e.g., second order statistics, delays,..)
with high accuracy while tracking the fast-varying fading
fluctuations in optimum (MMSE) way. The bound on the
MSE matrix is a valuable tool as a reference to assess the
performance of any proposed estimator and it is proved to
reduce to known results for simplified settings.

1. INTRODUCTION

Most of the algorithms as well as theoretical analyses de-
voted to MIMO systems have relied on the assumption of
perfect channel estimate (also referred to as perfect chan-
nel state information). However, a practical approach has to
take into account the effect of estimation errors. A setting of
recognized effectiveness in the pursuit of Shannon’s capac-
ity sees the transmission organized in bursts, each divided
into a training period and (one or more) payload section(s).
Training sequences are used to sound the radio channel, that
in general can be modelled as frequency-selective. Within
this framework, it is of practical and theoretical relevance
to derive a lower bound on the mean square error (MSE)
matrix of the channel estimate.
The lower bound will be derived for two different mul-

tipath MIMO channel models corresponding to different as-
sumptions about the geometry of the antenna arrays and the
scatterers. 1) Beamforming model [1]: the elements of both
the transmitting and receiving antenna arrays are co-located
and the scatterers can be considered as point sources as it is
reasonable to assume in outdoor environments. Each path of
the multipath channel is fully characterized by directions of
departure (DOD) and arrival (DOA), a delay and a complex
amplitude (fading). The latter is in turn modelled as a tem-
porally correlated Gaussian stationary process. 2) Diversity
model [2]: the elements of both the transmitting and receiv-
ing antenna arrays are not co-located and/or the different
scatterers have to be modelled as distributed sources. These

assumptions are generally well suited for indoor environ-
ments. The amplitudes for each delay of the multipath can
be modelled as spatially and temporally correlated jointly
Gaussian random variables with zero mean (Rayleigh fad-
ing).
To compute a lower bound on the performance of any

channel estimator for a frequency-selective MIMO system,
we consider some simplifying assumptions. The multipath
channel has some long-term characteristics (such as DOA’s,
DOD’s, delays, power-delay profile and temporal correla-
tion function for the beamforming model and delays, spatio-
temporal correlation function and power-delay profile for
the diversity model) and some fast-varying feature (fading).
An ideal estimator should be able to estimate the long-term
features of the channel with any accuracy and to track in
an optimal (MMSE) way the variations of fast-varying fea-
tures. By deriving the MSE matrix of the estimate for this
ideal method, we therefore set a lower bound on the achiev-
able performance of any estimation algorithm.

2. PROBLEM FORMULATION

We consider a MIMO link with M receiving and N trans-
mitting antennas over a frequency-selective fading channel.
After sampling at symbol-rate 1/T, the baseband discrete-
time channel between each transmitting and receiving an-
tenna is assumed to have a temporal support smaller than,
or equal to, W samples. The MIMO-FIR channel is esti-
mated by the periodic insertion into the data stream of N
training sequences, simultaneously transmitted by each of
the N transmitting antennas. The fading variations are suf-
ficiently slow to guarantee that the assumption of a static
channel within each training period is reasonably satisfied.
Let x[`] = [x(1)[`], · · · , x(N)[`]]T be the N × 1 vector

that stacks the training sequences {x(n)[`]}L`=1 for the n =
1, 2, ..., N transmitting antennas andHk[`] (` = 1, 2, ..,W )
theM ×N channel matrix impulse response within the kth
training period, the received signal is

yk[`] =
WX
i=1

Hk[i]x[`− i] + nk[`] (1)
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where nk[`] denotes the additive Gaussian noise (AGN) that
is assumed temporally uncorrelated but spatially correlated
with covariance matrixQ: E[nk[`]nk[`− i]H ] = Qδ[i]. By
stacking the received L samples of the training sequences
into a matrixYk = [yk[1], ...,yk[L]] the model (1) leads to

Yk=HkX+Nk, (2)

whereHk = [Hk[1], ...,Hk[W ]] is theM ×NW MIMO-
FIR channel matrix, X is the NW × L convolution matrix
obtained from the N training sequences so that the ith col-
umn ofX is [x[i− 1]T ,x[i− 2]T , ...,x[i−W ]T ]T ,Nk has
the same structure ofYk and 1/L ·E[NkN

H
k ] = Q.

For future use, we stack the columns ofHk into a vector
hk = vec{Hk} and the L columns of the matrix Yk into a
ML× 1 vector yk = vec{Yk}, obtaining from (2)

yk = (X
T ⊗ IM )hk + nk = X̄hk + nk. (3)

The AGN is nk = vec{Nk} and the covariance matrix for
temporally uncorrelated noise is E[nknHk ] = IL ⊗Q. Let
ĥk be the channel estimate, our purpose is to evaluate a
bound on the MSE matrix (i.e., correlation matrix of the
channel estimation error)MSE(ĥk) = E[(ĥk −hk)(ĥk −
hk)

H ]. The corresponding MSE of the estimate of hk is
MSEĥ = E[(ĥk−hk)H(ĥk−hk)] = tr{MSE(ĥk)}. We
recall that the (unconstrained) maximum likelihood (ML)
estimate of the channel vector is known to be ĥML,k =

X̄†yk and the correspondingMSEmatrixMSE(ĥML,k) =
((X∗XT )−1 ⊗Q) depends on the covariance of AGN and
on the correlation properties of the training sequences.

3. CHANNEL MODELS

The M × N matrix Hk[`] = Hk(`T ) denotes the `th tap
of the MIMO-FIR channel obtained by sampling at symbol-
rate (1/T ) the MIMO channel impulse response. In a mul-
tipath environment, the link between the nth transmitting
antenna and the mth receiving antenna can be described
by a combination of d paths, each characterized by a delay
τ i,k, a power Ωi,k and a normalized amplitude [Ai,k]m,n (i
denotes the dependence on the path, i = 1, 2, ..., d, and k
runs across the training periods). The MIMO channel im-
pulse response is thus a combination of d delayed replica of
the known waveform g(t), given by the convolution of the
transmitted baseband pulse and the receiving filter: Hk(t) =Pd
i=1

p
Ωi,k · g(t − τ i,k)Ai,k. After sampling and order-

ing theW channel matrixes into theM ×NW MIMO-FIR
channel matrix, we get

Hk =
dX
i=1

p
Ωi,k · g(τ i,k)T ⊗Ai,k, (4)

where g(τ) is the W × 1 vector that gathers the samples
of the waveform delayed by τ . For convenience, we rear-
range the entries of the MIMO-FIR matrix Hk by stack-
ing the columns of the M × N channel taps Hk[`] (i.e.,
Hk = [hk[1], ...,hk[W ]], where hk[`] = vec{Hk[`]}):

Hk = Ak · Ωk·G(τ k)T (5)

where Ak = [vec{A1,k}, · · · , vec{Ad,k}] is MN × d,
Ωk = diag{

p
Ω1,k, ...,

p
Ωd,k} and theW×dmatrixG(τ k)

= [g(τ1,k), ...,g(τd,k)] collects all the delayed waveforms.
The channel vector can now be obtained as hk = vec{Hk}.

3.1. Beamforming model

The ith path is characterized by a DOD α
(T )
i , a DOA α

(R)
i

and a complex amplitude (fading) βi,k so that

Ai,k = βi,kaR(α
(R)
i )aT (α

(T )
i )T (6)

where aT (α) (or aR(α)) is the N × 1 (or M × 1) vec-
tor containing the array response to a plane wave transmit-
ted (or received) with the angle α. Notice that the two ar-
rays do not need to have the same sensors’ arrangement.
The normalized faded amplitudes βi,k are uncorrelated zero
mean circularly symmetric normal (Rayleigh fading) with
unit power (i.e., βk ∼ CN (0, Id)); their temporal correla-
tion across different bursts is the same for all the paths as it
accounts for the mobility of the terminal: E[β∗i,kβi,k+n] =
ρn ∀i = 1, 2, ..., d with ρo = 1. According to (6), the ma-
trix Ak can be factorized into the burst-independent term
A0(α(T ),α(R)) = [aT (α(T )1 ) ⊗ aR(α(R)1 ), ...,aT (α

(T )
d ) ⊗

aR(α
(R)
d )] that contains the spatial signatures of the d sta-

tionary angles α(T ) = [ α
(T )
1 , · · · ,α(T )d ]T and α(R) =

[α
(R)
1 , · · · ,α(R)d ]T , and the d×1 vectorβk = [β1,k, · · · ,βd,k]T :

Ak = A0(α(T ),α(R))) · diag(βk). (7)

TheMNW × 1 channel vector hk thus reduces to:
hk = (G(τ ) ¦ A0(α(T ),α(R))) · Ω · βk =

= T(τ ,α(T ),α(R),Ω) · βk, (8)

where ¦ denotes the Khatri-Rao (or columnwise Kronecker
product). It is worthwhile to point out that theMNW × d
matrixT(τ ,α(T ),α(R),Ω) = (G(τ )¦A0(α(T ),α(R)))·Ω
is independent on the burst and the faded amplitudes βk are
correlated across time: Rβ(n) = E[βkβ

H
k−n] = Rβρn =

ρnId.
The matrix T could be rank-deficient as the space-time

signatures of different paths having the same DOD’s and
DOA’s and the same delays do not contribute to the matrix
T with linearly independent columns. In practice, the an-
gles (or delays) have to be compared with the array resolu-
tion (or the signal resolution) in order to assess the indepen-
dence of the columns. Let rank(T) = r ≤ d and let U be
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the MNW × r orthonormal matrix such that span{T} =
span{U} (i.e., in terms of the SVD ofT: T = UΛ1/2VH),
the channel (8) can be equivalently restated as

hk = U · dk. (9)

The newly defined amplitudes dk are mutually uncorrelated

Rd(n) = E[dkd
H
k−n] = Λρn (10)

with Λ = diag{λ1,λ2, ...,λr} and λi = µi[TTH ], the no-
tation µi[·] denoting the ith eigenvalue of its argument. The
matrix Λ represents the power-delay/angle profile that ac-
counts for the power on each vector of the basisU.

3.2. Diversity model

In a rich scattering environment (e.g., indoor), according to
the central limit, we can assume vec{Ai,k} ∼ CN (0,Ri),
where the MN ×MN matrix Ri accounts for the corre-
lation among the transmitting and receiving antennas and it
is normalized so that [Ri]kk = 1. The correlation between
transmitting and receiving antennas can be considered sep-
arable: Ri = RT,i ⊗ RR,i, where RT,i and RR,i are the
correlation matrix of the fading at the transmitting and re-
ceiving antennas, respectively [2].
According to (5), the channel vector hk becomes

hk = (G(τ )Ω⊗ IMN ) · vec{Ak} = T(τ ,Ω) · βk, (11)
here T(τ ,Ω) is MNW ×MNd matrix composed of the
W × d stationary matrix G(τ )Ω, and βk = vec{Ak} =
vec{[A1,k, · · · ,Ad,k]} is a MNd × 1 vector of the faded
amplitudes that are spatially (i.e., among sensors) corre-
lated. The correlation of the random amplitudes isRβ (n) =
Rβρn, where the spatial correlation matrix Rβ is block-
diagonal, and ρn accounts for the temporal correlation. The
model simplifies when the fading correlation is independent
on the path (Ri = R for ∀i) asRβ = Id⊗R, whereR can
be further assumed to be separable, i.e.,R = RT ⊗RR.
Similarly to the beamforming model, the channel vec-

tor can be rewritten by introducing the SVD G(τ )Ω =

UgΛ
1/2
g VH

g obtaining

hk = (Ug ⊗ IMN)·dk = U · dk, (12)

where the correlation of the r = MNrg amplitudes dk
depends on the eigenvalues µi[G(τ )Ω

2G(τ )T ] = [Λg]ii
(i = 1, .., rg) as in

Rd(n) = (Λ
1/2
g VH

g ⊗IMN )Rβ (VgΛ
1/2
g ⊗IMN )ρn. (13)

However, when the correlation is independent on the path
the correlation matrix (13) simplifies as

Rd(n) = (Λg⊗R)ρn. (14)

4. LOWER BOUND ON THEMSEMATRIX OF
THE CHANNEL ESTIMATE

According to the previous Section, the channel vector for
the kth training period can be written as

hk = Tβk = U · dk, (15)

where U denotes the orthonormal MNW × r matrix that
spans the same subspace as range{T}, and dk is the r × 1
vector of the burst-varying amplitudes. The long term fea-
tures of the channel are accounted for by the basisU. This is
assumed to be estimated with any degree of accuracy since
it is possible to devise a consistent estimator Û such that
cov{Û}→ 0 forK →∞. For instance, since E[hkhHk ] =
TTH , the leading eigenvectors of the sample correlation
matrix (1/K)

PK
k=1 hkh

H
k can be used as an estimate Û

that is consistent if the fading is asymptotically uncorrelated
(i.e., ρn → 0 for n → ∞). Notice that this estimate does
not require the knowledge of the array manifolds [5]. Al-
ternatively, we could perform a structured estimate of the
long-term parameters of the multipath such as angles and
delays. A thorough discussion on the estimators is not cov-
ered here. In addition, the correlation properties of the faded
amplitudes, i.e.,Rd(n) = Rdρn are known as well.
Recalling (15), the signal model (3) forK →∞ can be

restated in terms of the known matrix F = X̄U as

yk = Fdk + nk. (16)

Therefore, the task of the ideal channel estimator boils down
to the MMSE estimation of the amplitudes dk. In accor-
dance with our framework, the number of training periods
available to the estimator is taken to be K →∞ so that the
frequency domain MMSE theory can be applied. Therefore,
the MMSE estimate of the amplitudes in the frequency do-
main isF{d̂k} = Sdy(ω)Syy(ω)−1F{yk}whereSdy(ω) =
F{E[dkyHk−n]} denotes the discrete-time Fourier transform
of the crosscorrelation matrix between {dk} and {zk} and
Syy(ω) is similarly defined. The bound on the MSE ma-
trix MSE(ĥk) = UMSE(d̂k)U

H can then be evaluated
in closed form for a uniform Doppler spectrum Sρ(ω) =
1/2fD over the support ω ∈ [−2πfD,+2πfD]. Omitting
the straightforward proof, we get the MSE matrix

MSE(ĥk) = 2fD ·U(2fDR−1d +Rw)
−1UH , (17)

where Rw = UHMSE(ĥML,k)
−1U. It follows that the

mean square errorMSEĥ = E[||ĥk − hk||2] reads

MSEĥ = 2fD ·
rX
i=1

1

µi[2fDR
−1
d +Rw]

. (18)
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5. CONCLUDING DISCUSSIONS

The bound (17-18) generalizes some known results related
to the performance evaluation of MMSE or ML channel es-
timation presented in the literature. Some of these connec-
tions are discussed below.
1. Static channel (fD = 0): if the channel is static

the MSE matrix isMSE(ĥk) = 0. Indeed, in this case the
channel vector is a constant, hk = ū, that can be consis-
tently estimated with covariance O(1/K) by just averaging
the ML estimates ĥML,k obtained from the different slots.
2. Ideal training and noise (Q =σ2IM and X∗XT =

Lσ2xINW ): let us consider spatially white noise (Q =σ2IM )
and ideal training sequences (i.e., orthogonal between any
two transmitting antennas and with an impulsive tempo-
ral correlation: X∗XT = Lσ2xINW ), in this case Rw =
Lσ2x/σ

2Ir.
2.1. Beamformingmodel: the eigenvalues for the beam-

forming model can be evaluated as µi[2fDR
−1
d + Rw] =

Lσ2x/σ
2 + 2fD/λi for i = 1, 2, .., r so that the MSE be-

comes

MSEĥk = 2fD ·
rX
i=1

λi

2fD + λi
Lσ2x
σ2

. (19)

For low SNR (in practice Lσ2x/σ2 ¿ 2fD/λi ≤ 1/λi) the
MSE reads

MSEĥk '
rX
i=1

λi =MN
dX
j=1

Ωj kg(τ i)k2 , (20)

while for high SNR or small Doppler frequency (i.e.,Lσ2x/σ2
À 2fD/λi) the MSE

MSEĥk ' 2fD
σ2

Lσ2x
r (21)

is proportional to r = rank(T), i.e., to the number of pa-
rameters to be estimated on each burst. If terminals are
moving fast enough, the fading amplitudes are temporally
uncorrelated and fD = 1/2. In this case, the MSE (21)
for M = 1 coincides with the MSE bound on the channel
estimation error derived in [5] for a SIMO system.
2.2. Diversity model: the MSE depends on the r =

MNrg eigenvalues of the matrix 2fDR−1d +Rw, that can
be expressed in terms of the eigenvalues ofRT andRR:

MSEĥk = 2fD

rgX
i=1

NX
n=1

MX
m=1

λiµn[RT ]µm[RR]

2fD +
Lσ2x
σ2 λiµn[RT ]µm[RR]

.

(22)

For low SNR the MSE coincides with (20) derived for the
beamforming model. For high SNR it is

MSEĥk ' 2fD
σ2

Lσ2x
MNrg, (23)

showing that, as in the beamforming case, for high SNR
the MSE bound depends on the number of parameters to
be estimated on each burst (i.e., r = MNrg parameters).
Furthermore, the MSE bound (23) is upper bounded by the
worst case of uncorrelated fading (fD = 1/2).
For a frequency-flat fading channel the number of clus-

ters with different delays is d = 1 andW = 1. In this case
U = IMN , and the MSE matrix is

MSE(ĥk) = 2fD ·
µ
2fD
Ω
R−1 +

Lσ2x
σ2

IMN

¶−1
. (24)

By further assuming spatially uncorrelated fading (R = IMN )
the MSE reduces to the result in [3]

MSE(ĥk) =
2fDΩ

2fD +Ω
Lσ2x
σ2

IMN (25)

⇒ MSEĥk =
2fDΩMN

2fD +Ω
Lσ2x
σ2

. (26)

Moreover, if the faded amplitudes are uncorrelated across
different bursts (fD = 1/2) and for large SNR (ΩLσ2x/σ2 À
1) the MSE (25) becomes

MSEĥk =
σ2MN

Lσ2x
, (27)

that coincides with the Cramer Rao Bound bound for the
ML estimator carried out on a burst-by-burst basis (see, e.g.,
[4]).
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