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ABSTRACT

Multiple antenna wireless communication systems have recently
attracted significant attention due to their higher capacity as com-
pared to the systems that employ a single antenna. For systems
with alarge number of antennas, thereis astrong motivation to de-
velop techniques with reduced hardware and computational costs.
An efficient approach to achieve this goal is the optimal antenna
subset selection. In this paper, we propose a fast antenna selection
a gorithm for wireless multiple-input multiple-output (MIMO) sys-
tems. Our agorithm achieves almost the same outage capacity
as the optimal selection technique while having a lower computa-
tional complexity than the existing nearly optimal antenna selec-
tion methods.

1. INTRODUCTION

The capacity of wireless communication systems operating in fad-
ing environments can be increased substantially by using multiple
antennas at the transmitter and receiver. In [1]-[3], it has been
shown that the capacity of MIMO systems increases almost lin-
early with the minimum of the numbers of the transmit and receive
antennas. In practice, however, the main limitation of increasing
the number of transmit and receive antennas is typically not the
number of sensors, but the cost of the corresponding RF channels
for these antennas and a high amount of computations required for
signal encoding and decoding. Thislimitation may be more severe
when there are some power constraints.

A promising way of capturing a large portion of the channel
capacity in MIMO systems at reduced hardware costs and compu-
tational complexity isto select optimally asmall number of “best”
antennas from the larger set of antennas available.

Antenna subset selection problems have been intensively stud-
ied in the literature. To select the receive antennas in the optimal
way, the channel capacity hasto be computed for all possible com-
binations of them and, as a result, the computational cost of such
a procedure may be prohibitively high.

Gore and Paulra studied antenna selection for the Alamouti’s
space-time codes [4]. They showed that for the transmit/receive
antenna selection, choosing two columns/rows of the channel ma-
trix with the largest 2-norms results in the highest SNR at the de-
coder.
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A promising approach for the fast antenna subset sel ection was
proposed by Gorokhov [5]. This agorithm finds a nearly opti-
mal selection of receive/transmit antennas based on the capacity
maximization. The algorithm begins with the full set of antennas
available and then removes one antenna per step. In each step, the
antenna with the lowest contribution to the system capacity is re-
moved. The reduction in capacity due to removing of each single
antennais eval uated using aproper updating formula. This process
is repeated until the required number of antennas remains.

In this paper, we propose a novel fast nearly optimal selection
algorithm whose computational complexity is substantially lower
than that of the algorithm of [5]. In contrast to the technique of [5],
our algorithm starts with the empty set of selected antennas and
then adds one antenna per step to thisset. In each step, the antenna
with the highest contribution to the system capacity isadded to the
set of selected antennas.

Similar to the algorithm of [5], our approach is applicable both
to the receive and transmit antenna selection. However, for the
sake of simplicity, only the receive antenna selection case will be
considered below.

2. MIMO SIGNAL MODEL

Let us denote the numbers of the available receive and transmit
antennas by NV, and N, respectively, and number of the selected
receive antennas by L,.. Theinput-output relationship foraMIMO
system is given by [6]

r(t) = \/NTSHS(t) + w(t) (1)

wheres(t), r(t), and w(t) are the transmitted signal, the received
signal, and the zero-mean additive noise vectors, respectively, H
isthe N, x N, channel matrix, p is the average SNR, and (~)T
stands for the transpose. Without loss of generality, it is assumed
that E{w(t)w (t)} = In, whereIy, isthe N, x N, identity
matrix and (-)* stands for the Hermitian transpose.

We make use of the standard assumption that the channel ma-
trix H is known at the receiver [3]. For any H, the capacity of the
MIMO channel in (1) is given by [1]

C(H) = log, det <1Ns + NiHHH) )

E]

3. PROPOSED ALGORITHM

In order to make the receive antenna selection, instead of com-
puting the capacity for all possible combinations of selected L,
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Table 1. The proposed fast antenna selection algorithm.

FastAntSel(N, , L., Ns, hi, ..., hxy,, p)
T:={1,2,...,N,}
B =1y,
forj:=1to N,
a; :=h['h; O(NsN,)
end
forn:=1to L,
J := argmax «; O(N,L,)
JjeT
I:=7T—-{J}
ifn< L,
a:= ;Bm O(N? L)
VNs/p+ay
B:=B — aa” O(NZL,)
foral j €T
oj = aj —|a” h;? O(NsN, L)
end
end
end
reurn {1,2,...,N,} —Z

antennas (as in the optimal selection procedure), the proposed al-
gorithm starts with the empty set of selected antennas and then
adds one antenna per step to this set. In each step, our objective
is to select one more antenna which leads to the highest increase
of the capacity (2). In the n-th step of the algorithm, the n. x N,
channel matrix corresponding to the selected n receive antennasis
denoted by H,,. The matrix H,, containsn rows of H (in the same
order asthey appear in H) which correspond to the n antennas se-
lected. We will denote the j-th row of H by f; and its Hermitian
transpose by h;.

Let us assume that in the (n + 1)-st step, the receive antenna
corresponding to the J-th row of H is selected. By this selection,
f; isinserted in aproper positionin H,, to obtainthe (n+1) x N,
channel matrix H,,4+1. Then, using (2), we have

CH, ) = Togy det (T, + LHLHL0 ). @

Noting that
Hf+1Hn+1 = Han + th? (4)

making use of the Sherman-Morrison formula for determinants,
and using the notations

—1
B, 2 (INS + Ni Han) . ;. 2hfB,h; (5)
we obtain that (3) can be rewritten as

C(H2) = CCRL) +1og, (14 frasn) @
where, for any j, the value of o ,, represents the contribution of
the j-th receive antenna to the expression under the log function
in (3) if thisantennais selected in the (n + 1)-st step of the algo-
rithm. Finding J that maximizes C'(H,.+1) in (6) is equivalent to
obtaining

J = Argmax o, (7)

Table2. Analternative form of the proposed fast antenna selection
agorithm.

FastAntSel (N, , L, Ns, hq, ..
7:=11,2,...,N;}
forj:=1to N,
Qj = h;l h]'
end
forn:=1to L,
J: arglgleazx Q;
I:=7T—-{J}
ifn< L,

n—1
Pyp— 1 H .
a.n._\/]vsj<hJ—Z(ai hJ)a)
» +aJ =1
foraljeZ
aj = a; —|a, bl
end
end

end
reurn {1,2,...,N,} - T

v hw,, p)

O(NsN;.)

O(N, L;)

O(N,L?%)

O(NsN, L)

The matrix B,, can be updated using the matrix inversion lemma,

B-n+1 = Bn - aaH (8)
wherea £ \/N/% B, h;. Toreduce the number of compu-
s xXJ,n

tations, let us use the following updating formula
h{'B,;1h;
hf’ (B, —aa" ) b,

Qjntl =

= ajn—lahj|% ©)

Equation (9) demonstratesthat «; ,, cannot increase asn increases.
The proposed agorithm is summarized in Table 1 with the
right column showing the complexity corresponding to each part
of the algorithm. In our technique, B,, and «;,,, are computed in-
place, and, therefore, their subscript n is dropped. Furthermore,
we assume that N, > L, because the complexity of antenna sub-
set selection algorithms becomes an important i ssue only when the
number of computationsis high (i.e., when IV, islarge), while the
selected antenna subset L, isusually much smaller than NN,.

With these assumptions, the total order of complexity is given
by O(max{N;, N, }NsL,). An alternative formulation of our al-
gorithm is shown in Table 2, where storing and updating of B,,
is avoided, and an equivalent of the updating formula for B, is
directly used to compute a.

L et us compare the computational complexity of our algorithm
to the fast algorithm of [5] which is summarized in Table 3. In the
case N, > L., the complexity of this agorithm is not less than
O (NZN;). Therefore, our algorithm has a significantly lower
computational complexity than the algorithm of [5]. This com-
plexity reduction is due to the fact that our algorithm starts from
the empty set of selected antennas rather than from the full set (as
the algorithm of [5] does). Moreover, in our method, the quantity
aj,» 1S updated rather than recomputed. At last, our algorithm is
devoid of the matrix inverse operation. This certainly simplifiesits
implementation as compared to the algorithm of [5].




Table 3. The antenna selection algorithm of [5].

FastAntSel(N,, Ly, Ns, hy, ..., hx,, p)
7:={1,2,...,N,}
H:=[h h hy, 17
-1
B .= (INS + 15 H” H) O(N2 4 N2N,)
forn:=1toN, — L,
foraljeZ
a; := hj' Bh; O(NZN?)
end
J := argmin «; O(N?)
JET
IT:=7-{J}
ifn< N, — L,
a:=Bh; O(N2N;,)
1 H 2
B:=B + Nolp—ay aa O(N; N;)
end
end
return Z

4. QR DECOMPOSITION-BASED INTERPRETATION

In this section, a QR decomposition-based interpretation of the
proposed agorithm is developed. This interpretation explicitly
shows why the proposed algorithm tends to avoid selection of the
rows of H that result in arank-deficient channel matrix.

The dternative form of the proposed algorithm in Table 2 can
be seen to have a high level of similarity to the Gram-Schmidt or-
thogonalization procedure. The only difference between the algo-
rithm of Table 2 and the Gram-Schmidt orthogonalization of h;'s
is the presence of the term N, /p in line 10 of Table 2. For large
values of the SNR, the term N, /p can be ignored and our algo-
rithm becomes identical to the Gram-Schmidt procedure.

Let us show that for any value of the SNR, Table 2 corresponds
to the Gram-Schmidt orthogonalization of the rows of another ma-
trix G (defined below) which are related to the rows of H.

If al the available receive antennas are used, the channel ca-
pacity can be aternatively expressed as

C(H) = N, log Ni + log, det (N7 In, + HHH> - (19

Since the matrix Ns /p In, + HH in (10) is Hermitian and non-
singular, thereexistsa IV, x N, full rank matrix G such that

% Iy, + HH” = GG". (11)

Note that the matrix G has the same number of rows as H but not
necessarily the same number of columns. Removing some rows
from H results in removal of the corresponding rows from G. If
we denote the j-th column of G by g; then it is clear from (11)

that N
" h{'h; + =
8 8 = u P

h/h; ifig.

Let us use the QR decomposition G = QR. Here, Q isan
N, x N, orthogonal matrix, and R isa N, x N, upper-triangular

ifi=j 12

Table 4. A QR decomposition-based interpretation of the pro-
posed algorithm.

FaSAntSa (N, , vy g1, ...
7:={1,2,...,N,}

) gN'r')

for j :=1to N,

Bi =g g O(N?)
end
forn:=1to L,

Jn 1= argmax [3; O(N, L;)

JET
IT:=7T—-{J.}
ifn< L,

) 1 n—1 . . )
NS (an - (&7 g )ng) O(N, L)
Jn i=1

foralj ez
Bj = Bi — &), &l’ O(N;L,)
end
end
end
return {1,2,...,N,} — T

matrix. Then, from (11) we obtain
N5 H _ pH
1y, +HH” =R"R. (13)
P

Inserting (13) into (10) and taking into account that the determi-
nant of atriangular matrix is the product of its diagonal entries, we
have

N, 2
C(H) = N, log NL + log, H Rjj) (14)

j=1

where R;; is the j-th diagonal element of R. From the theory of
the QR decomposition, it is well-known thet R;;’s are the norms
of the residuals of g;’s after the Gram-Schmidt orthogonalization.
Note that any permutation of the rows of H corresponds to the
corresponding permutation of the rows of G, which, in turn, cor-
responds to changing the order of orthogonalization of g;’'s. How-
ever, such a permutation does not affect C'(H). Therefore, even
though the individual values R;; depend on the order of rowsin
H, thevalue ]}, R;; doesnot.

Now, we are interested in finding a subset of L, rows of H,
or equivalently, a subset of L, rows of G, such that Hf;l R;; is
maximized. One possible approach would be to permute the rows
of G in such away that the selection of the first row would cor-
respond to the largest R11, and then to select the second row such
that R»» is maximized, and so on. An agorithm that is based on
this concept isshown in Table 4. In thisalgorithm, .J,, corresponds
to the index of therow of G selected in the n-th step and g, cor-
responds to the normalized version of g,, .

Comparing the algorithms of Tables 2 and 4 and making use
of (12), we see that these two techniques lead to equivalent resullts.
In particular, using (12) it is easy to show by induction that in the
n-th step, the parameters a;; and §; in line 4 of these algorithms
arerelated as B; = a; + N, /p, whileinline 12, g7 g; in Table
4 resultsin the same value asa h; in Table 2.

In summary, the proposed algorithms of Table 2 and Table 1
can be interpreted as Q R decomposition-based techniques applied
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Fig. 1. 10% outage capacity versus the SNR. First example.

to a correspondingly row-permuted matrix G. However, the QR
decomposition is performed in these algorithms by making use of
the rows of H rather than G.

An interesting observation following from the equivalence of
the algorithms of Tables 1 and 2 to the @ R decomposition of the
matrix HZ at high SNRsis that after selecting N, receive anten-
nas, selecting any more antennas does not increase the capacity.
Furthermore, if the rows of H are not independent (i.e., if H is
rank deficient), increasing the number of antennas makes sense up
to L, = rank(H) antennas only.

5. SSIMULATION RESULTS

To compare the performances of the proposed algorithm, the opti-
mal antenna selection technique, the norm-based selection (NBS)
method of [4], and the fast algorithm of [5], computer simulations
have been carried out. The performance corresponding to the case
where no advanced selection strategy is used is also shown (in this
case, L, receive antennas are always chosen at random). Through
our simulations, Ny = 4, N, = 16, and L, = 4 are assumed. All
results are averaged over 1000 channel realizations.

In the first example, we consider the Rayleigh channel case
where the elements of H are independently drawn from a complex
zero-mean Gaussian distribution with the unit variance.

Fig. 1 shows the 10% outage capacity versus the SNR. We see
that the performances achieved by the proposed method and the
agorithm of [5] are very close to that of the optimal selection pro-
cedure for awide range of the SNR values, while the performance
of the NBS algorithm is noticeably lower.

In the second example, we examine the performance of dif-
ferent antenna selection methods when the rows of H are linearly
dependent. In this example, the elements of the first, fifth, nineth
and thirteenth rows of H are independently drawn from a com-
plex zero-mean Gaussian distribution with the unit variance, while
there are four groups of identical rows: therows #2, 3, 4 areiden-
tical to thefirst row, therows #6, 7, 8 areidentical to the fifth row,
therows #10, 11, 12 areidentical to the nineth row, and the rows
#14,15,16 areidentical to the thirteenth row.

Fig. 2 shows the 10% outage capacity versus the SNR. This
figure clearly demonstrates that the performance of the NBS meth-

T T
—— Optimal Selection

-+ Proposed Algorithm
< Gorokhov's Algorithm
x
o

NBS Algorithm
No Selection Strategy

o
N

10% Outage Capacity (bit/s/Hz)
=
S

@

Q
I
2

10 12 14 16 18 20
SNR (dB)

Fig. 2. 10% outage capacity versus the SNR. Second example.

od is very poor (and even much worse that the performance achie-
ved when the antennas are sel ected at random), while the proposed
method and the method of [5] perform nearly optimally. The rea-
son for such poor performance of the NBS method is that in the
second, third and fourth selection steps it choses the antennas that
have the same fading coefficients as the antenna chosen in the first
step. This does not increase the rank of H,, and, hence, resultsin
alow capacity.

6. CONCLUSIONS

A new fast algorithm has been proposed for antenna selection in
wireless MIMO systems. Our agorithm is shown to have a strong
relationship to the Q R decomposition of the channel matrix. This
interpretation shows how the antenna subset selection procedure
depends on the rank properties of the channel matrix.
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