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ABSTRACT

In many communications problems, maximum-likelihood
(ML) decoding reduces to finding the closest (skewed) lat-
tice point in � -dimensions to a given point � � �� . In
its full generality, this problem is known to be NP-complete
and requires exponential complexity in� . Recently, the ex-
pected complexity of the sphere decoder, a particular algo-
rithm that solves the ML problem exactly, has been com-
puted where it is shown that over a wide range of rates,
SNRs and dimensions the expected complexity is polyno-
mial in � . In this paper, we propose an algorithm that, for
large � , offers substantial computational savings over the
sphere decoder, while maintaining performance arbitrarily
close to ML. The method is based on statistically pruning
the search space. Simulations are presented to show the al-
gorithm’s performance and the computational savings rela-
tive to the sphere decoder.

1. INTRODUCTION

Multiple antenna systems have been shown to be capable
of achieving high data rates. However, reliable decoding
in these systems requires very high complexity. For a wide
class of space-time transmission schemes (see e.g., [1, 2])
ML decoding requires us to solve an Integer Least Squares
problem, which is, in general, NP-hard. Practical meth-
ods to solve this employ approximations or heuristics. Zero
forcing cancellation, nulling and cancelling and nulling and
cancelling with optimal ordering [1, 2] are some of these.
However, the bit error rate (BER) performance of these is
inferior to that of the exact methods.

Exact methods that search over the entire (finite) signal-
space require exponential search. More sophisticated exact
methods such as Kannan’s algorithm [3], the KZ algorithm
[4] and the sphere decoding algorithm of [5] attempt to re-
duce the search space. The branch and bound algorithm,
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popularly used to solve integer (usually linear) program-
ming problems, imposes additional constraints on the opti-
mizing variables to reduce the size of the problem and also
requires estimates of upper and lower bounds of the objec-
tive function to prune the tree. Hence it is not suitable for
the ML decoding problem.

In the sphere decoding algorithm we find the lattice points
lying in a hypersphere centered at � and then determine the
point closest to �. The analysis for the expected complex-
ity of this has been done in [6]. While this algorithm yields
polynomial-time complexity over a wide-range of rates, di-
mensions and SNRs, it does require a non-polynomial com-
plexity for large� .

In this paper, we propose a modification to the sphere
decoding algorithm that uses statistical pruning to reduce
the search for the closest point to a region much smaller
than the hypersphere. This causes a reduction in complex-
ity, at the price of increasing the BER. However, we show
that significant computational savings can be obtained while
keeping the BER arbitrarily close to that of the ML decoder.

Below, we describe the system model and the original
and modified decoding algorithms and then analyze the per-
formance and complexity of the proposed algorithm.

2. SYSTEM MODEL

We assume a discrete-time block-fading multiple antenna
channel model with � transmit and � receive antennas,
where the channel is known to the receiver.1 If � is the
signal space, during any channel use the transmitted signal
�� � ���� and the received signal � � ���� are related by

� � ������ � (1)

where � � ���� is the known channel matrix and � �
���� is the additive noise vector, comprised of indepen-
dent, identically distributed (i.i.d.) complex-Gaussian en-
tries �� ��� �� i.e. ��� � �. If we assume that the entries

1The case of nonequal number of transmit/receive antennas can also be
dealt with in a straightforward fashion, but is omitted for brevity.
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of � and � have unit variance, then �� �
�

�

�
where � is

the expected signal-to-noise ratio (SNR). Under the afore-
mentioned assumptions the ML criterion requires us to find
� � ���� that minimizes �������.

3. SPHERE DECODER

In sphere decoding we search only over lattice points that
lie in a hypersphere of radius 	 around �, thus reducing the
search space and the computation. Therefore we need to
find all � � ���� that satisfy

	� � ������� (2)

To this end, consider the QR decomposition of the channel
matrix, � � 
� where � is an � � � upper triangular
matrix with positive diagonal and 
 is an � � � unitary
matrix. We then have

������� � ���
���� � �
�������

Define �
�

� 
�� � �� and 
� � 	�
�

�����	
� for � �

�� �� � � �� . Note that, due to the upper-triangularity of �,

� depends only on the unknowns �� � � � � � ������. Thus
finding all � that satisfy (2) amounts to finding all � that
satisfy


� � 
� � � � �� 
� 
 	�

This is achieved by solving successively for


� 
 	�


� � 
� 
 	�

...


� � 
� � � � �� 
� 
 	� (3)

The point is that the first condition gives an interval for �� ,
whereas for any pre-determined �� � � � � � ������, the �-th
condition gives an interval for ������.

We see that the algorithm constructs a search tree where
the branches in the �-th level of the tree correspond to the
lattice points inside the hypersphere of radius 	 and dimen-
sion �. The complexity of the algorithm depends on the size
of the resulting search tree.

The radius 	 has to be chosen carefully. If 	 is too large,
we obtain too many points, but if it is too small, we get no
points in the hypersphere and have to redo the computation
with a larger 	. In [6], a choice of 	 based on the statistics
of the noise is suggested. This 	 is proportional to � .

While the sphere decoding algorithm is one of the more
efficient exact methods to solve the maximum likelihood
problem with finite constellations (�-PAM, �-QAM etc.),
it stops giving polynomial complexity at some � which is
in the range of practical interest. The reason for this is un-
derstood as follows – because the radius 	 is proportional to

� , the algorithm retains a very large fraction of the lattice
points (in fact nearly all the points) upto some dimension �
before it starts to prune the tree. For instance, if � � ����,
we have 	 � �� such that upto dimension � � ��� we
keep nearly all the points of the lattice. This already gives
us ���� points to search over and the complexity quickly
becomes exponential.

4. STATISTICAL PRUNING

Taking our cue from this, we modify the algorithm to start
pruning the tree corresponding to the search region much
earlier. The sphere decoder gives exponential complexity
for large � because the first several conditions of (3) are
very loose and do not help in reducing the search space. We
propose instead a schedule of radii 	� 
 	� 
 � � � 
 	� :


� 
 	��


� � 
� 
 	��
...


� � 
� � � � �� 
� 
 	�� (4)

Denote by �� the region in ���� containing points that sat-
isfy the first � inequalities of (4). (Note that these points
have been determined by finding out values of �� , ����

� � �, ������ that satisfy the first � conditions.) We refer to
�� as � in the following discussion. We can determine all
� � � by a procedure identical to that of the original sphere
decoder. The algorithm is

Input: 
, �, �, � � 
��, 	�� � � � � 	� .

1. Set � � � , 	
��
� � 	�� , �

��

� � ��

2. Set ������ � 
 �
�

���
��

�

����
�, ������ � ���

�

���
��

�

����
� � �

3. �� � �� � �. If �� 
 ������ go to 5, else go to 4.

4. � � � � � and go to 3.

5. � � � � �. If � � �, go to 6.
Else
	
��
� � 	

��
�����	�������	

�
�������

��

����	���	��������
�

�
��

� � �� �
��


���� 	�	
�

Go to 2.

6. Solution found. Save � and go to 3.

Once all � � � have been determined, we declare the de-
coder output as the � � � which minimizes �������.

Note that the region� is different from the hypersphere.
Depending on the values of 	�� 	�� � � � 	� it may include
more or less points than the hypersphere of radius 	. To
reduce the complexity, we naturally try to reduce the num-
ber of points in �. However, because of the ‘asymmetry’ of
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�, it is possible that the lattice point closest to � does not
lie in �. Thus, unlike the sphere deoder, we are not doing
ML decoding and are, potentially, incurring a greater BER.

Thus we obtain a tradeoff.

5. PROBABILITY OF ERROR

Let �� be the transmitted point and � � � ��� �� ��. With
probability �� we make an error by decoding to � �� ��.

�� � ������ � ��� ��� � �� � ������ �� ��� ��� �� ��

� ������ � ��� ��� � �� � � � �

� � �������� � ���� for � �� ��� � � ���� � �� �

� ��� � �� � �

� � �������� � ���� for � �� ��� � � �� �� � �� � �

� � �������� � ���� for � �� ��� � �

� �
��

� � �

where ��

� is the probability of error with ML decoding.

The first inequality above is very loose and hence this is
not a very tight upper bound. Also, since we are not using
any coding on the transmitted signal, � �


� will not go to
zero and so by making � small we can obtain performance
arbitrarily close to ML.

We now determine �. If � � ��, we have �
�

� 
��.
Since
 is unitary,
�� has the same statistics as � i.e. i.i.d.
entries distributed as �� ��� ��. With 
� � 	�

�

�����	
�, we

have ����
�� � ���� . Because 
�� � � � � 
� are independent,

���	��	���	�� �
�� 
�� � � � � 
� � � ��������������� �

�� � is the probability that these 
�’s satisfy (4). Therefore

�� � �

� ��
�

�

� � �

� �����������������

�

������������ ��
� � � � �
�

Changing variables to �� �
��


�� 

 for � � �� � � � � �

�� � �

� ��
�

�

� ��
�

��

� � �

� ���

����

������� � � � ���

If we call this integral �� and integrate out �� we get

�� � ���� � �
�������� (5)

where ���� �
� ��

�

�

� ��
�

��
� � �
� �����

����

����� � � � ���. It can be
shown that the ��’s satisfy the recurrence

�� �

����
���

���������
	
������
���

�� � ��	
�� (6)

We define �� � �. Then, using (5) recursively, we get �� �

� �
��

��� �
��������. The ��’s are determined by defining

�� � � and using (6) recursively. We thus have

� �

��
���

���
�

����� (7)

We use this to determine the radii 	�� � � � � 	� . For example,
if we choose a linear schedule i.e. 	�� � �Æ 
���� ����� , we
choose Æ such that � � ���� etc.

6. COMPUTATIONAL COMPLEXITY

To compute the complexity of the algorithm, we need to
calculate the number of points that we search over. This
means we need to determine how many points in � ��� are
also in �� at every dimension � � �� � � � � � . We then need
to sum over all dimensions to estimate the number of points
visited during the decoding.

Let �� � ����. �� � �� if it satisfies the first � equa-
tions of (4). Once � ��� � ��� is determined, we can then
sum these probabilites for all �� � ���� to get the expected
number of points in the search space at dimension �. (Note
here that at dimension � we have determined the values of
�� � � � � � ������ that satisfy the first � equations of (4).)

For any ��, the joint distribution of 
�� � � � � 
� deter-
mines � ��� � ���. More specifically,

� ��� � ��� (8)

�

� ��
�

�

� � �

� �����������������

�

���	���	���
�� � � � � 
���
� � � � �
�

If ��� is the variance of each entry of � (�� � �), ��
is as defined in section (2) and �� � �

�����
�

�
���������

(��� is

the truncation of �� corresponding to � ��� i.e. the vector

��� � � � � � ��������) it can be shown that

����
�� �
���
�������

������
����
���

�
�� �

�

�

��
�	

����� � ���
� (9)

Since the 
�’s are independent we have

���	���	���
�� � � � � 
�� �

��
���

����
�� (10)

Substituting (9) and (10) into (8), the integral for � �� � �
��� can be obtained exactly. However, it gives an expres-
sion that is difficult to manipulate and sum over. Using some
approximate analysis, it can be shown that� ��

�

�

� � �

� �����������������

�

���	���	���
�� � � � � 
���
� � � � �
�

�
��
���

� ��

�

����
��

where �� � 	�� and the ��’s are obtained by solving the
recursion

�� � 	�� � 	
�
��� �

� � 
�� �

�����
�
����

�

�
�

�����

�
�� � 
�� � � ���������� � ���������
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It can further be proved that
���

�
����
�� is well approxi-

mated by min��� ����

� �. We have omitted the details here in
the interests of space.

We thus have

� ��� � ��� �
��
�

min���
����

�
� (11)

The complexity is now given by

 �
��
���

�expected # of points in ��� � �flops/point	 
� �
	��
�

�

�

��
���

��� � ���
�

�������

� ��� � ���

�

��
���

��� � ���
�

�������

��
�

min���
����

�
�

The above can be computed efficiently with Monte Carlo
simulations. An exact sum also seems possible and we are
working towards it.

7. SIMULATIONS
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Fig. 1. Complexity Exponent and BER for �=50 with QPSK
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Fig. 2. Complexity Exponent and BER for �=20 with QPSK

Fig. (1) shows the BER and the complexity exponent
i.e. 
�� ! 
��� for the modified decoder. We have �=50
and QPSK signalling. Since the constellation is complex,
it amounts to decoding a ��=100-dimensional real signal.
We have used 	�� � �Æ 
��� � ����� with Æ chosen to make
� � ���. Fig. (1) also shows the complexity for the origi-
nal sphere decoder. We can see that it requires nearly ���

times as much computation as the modified decoder. It is ex-
tremely computationally expensive to generate a BER plot
with this decoder for �=50.

In order to compare the BER, we show results for�=20
and QPSK signalling in Fig. (2). We see that the loss in
BER is quite insignificant and can be compensated by an
increase in SNR of around 0.1dB. From the complexity ex-
ponent we see that the modified decoder runs around �� ��	

times faster.

8. CONCLUSIONS

We have an algorithm that performs nearly as well as ML
decoding and gives significant savings in the computational
complexity. With the modified sphere decoder sub-cubic
complexities are possible for larger values of � in wider
ranges of SNR than before. This is with BERs arbitrarily
close to those for ML decoding. With different schedules
the tradeoff between performance and complexity can be
altered.

It will be interesting to see how this generalizes to sys-
tems that include coding in the signalling scheme.

9. REFERENCES

[1] G. J. Foschini, “Layered space-time architecture for wireless
communication in a fading environment when using multi-
element antennas,” Bell Labs. Tech. J., vol. 1, no. 2, pp. 41–59,
1996.

[2] B. Hassibi and B. Hochwald, “High-rate codes that are linear
in space and time,” IEEE Trans. Info. Theory, vol. 48, no. 7,
pp. 1804–1824, July 2002.

[3] R. Kannan, “Improved algorithms on integer programming
and related lattice problems,” Proc. 15th Annu. ACM Symp.
on Theory of Computing, pp. 193–206, 1983.

[4] J.C. Lagarias, H.W. Lenstra, and C.P. Schnorr, “Korkin-
Zolotarev bases and successive minima of a lattice and its re-
ciprocal,” Combinatorica, vol. 10, pp. 333–348, 1990.

[5] U. Fincke and M. Pohst, “Improved methods for calculat-
ing vectors of short length in a lattice, including a complexity
analysis,” Mathematics of Computation, vol. 44, no. 170, pp.
463–471, April 1985.

[6] B. Hassibi and H. Vikalo, “On the expected complexity of
sphere decoding,” Submitted to the IEEE Transactions on Sig-
nal Processing, 2002.

V - 52

➡ ➠


