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ABSTRACT

In many communications problems, maximum-likelihood
(ML) decoding reduces to finding the closest (skewed) lat-
tice point in N-dimensions to a given point z € CV. In
itsfull generality, this problem is known to be NP-compl ete
and requires exponential complexity in N. Recently, the ex-
pected complexity of the sphere decoder, a particular algo-
rithm that solves the ML problem exactly, has been com-
puted where it is shown that over a wide range of rates,
SNRs and dimensions the expected complexity is polyno-
mial in N. In this paper, we propose an algorithm that, for
large N, offers substantial computational savings over the
sphere decoder, while maintaining performance arbitrarily
close to ML. The method is based on statistically pruning
the search space. Simulations are presented to show the al-
gorithm’s performance and the computational savings rela-
tive to the sphere decoder.

1. INTRODUCTION

Multiple antenna systems have been shown to be capable
of achieving high data rates. However, reliable decoding
in these systems requires very high complexity. For awide
class of space-time transmission schemes (see e.g., [1, 2])
ML decoding requires us to solve an Integer Least Squares
problem, which is, in general, NP-hard. Practical meth-
ods to solve this employ approximations or heuristics. Zero
forcing cancellation, nulling and cancelling and nulling and
cancelling with optimal ordering [1, 2] are some of these.
However, the bit error rate (BER) performance of these is
inferior to that of the exact methods.

Exact methods that search over the entire (finite) signal-
space require exponential search. More sophisticated exact
methods such as Kannan's algorithm [3], the KZ agorithm
[4] and the sphere decoding algorithm of [5] attempt to re-
duce the search space. The branch and bound algorithm,
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popularly used to solve integer (usualy linear) program-
ming problems, imposes additional constraints on the opti-
mizing variables to reduce the size of the problem and also
requires estimates of upper and lower bounds of the objec-
tive function to prune the tree. Hence it is not suitable for
the ML decoding problem.

Inthe sphere decoding a gorithm we find thel attice points
lying in a hypersphere centered at = and then determine the
point closest to z. The analysis for the expected complex-
ity of this has been donein [6]. While this algorithm yields
polynomial-time complexity over awide-range of rates, di-
mensions and SNRs, it does require a non-polynomial com-
plexity for large V.

In this paper, we propose a modification to the sphere
decoding agorithm that uses statistical pruning to reduce
the search for the closest point to a region much smaller
than the hypersphere. This causes a reduction in complex-
ity, at the price of increasing the BER. However, we show
that significant computational savings can be obtained while
keeping the BER arbitrarily closeto that of the ML decoder.

Below, we describe the system modd and the original
and modified decoding algorithms and then analyze the per-
formance and complexity of the proposed algorithm.

2. SYSTEM MODEL

We assume a discrete-time block-fading multiple antenna
channel model with N transmit and N receive antennas,
where the channel is known to the receiver.!  If S isthe
signal space, during any channd use the transmitted signal
5 € SV*1 and thereceived signal = € CN*! arerelated by

x=o0,HS+v (1)

where H € CV*N s the known channel matrix and v €
CN*1 is the additive noise vector, comprised of indepen-
dent, identicaly distributed (i.i.d.) complex-Gaussian en-
triessCAN(0,1) i.e. o2 = 1. If we assume that the entries

1The case of nonequal number of transmit/receive antennas can also be
dealt with in a strai ghtforward fashion, but is omitted for brevity.
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of s and H have unit variance, then o, = /£ where p is
the expected signal-to-noise ratio (SNR). Under the afore-
mentioned assumptions the ML criterion requires us to find
s € SV*! that minimizes ||z — Hs||?.

3. SPHERE DECODER

In sphere decoding we search only over lattice points that
lie in ahypersphere of radius » around z, thus reducing the
search space and the computation. Therefore we need to
findal s € SV*! that satisfy

r? > ||z — Hs|f? @

To this end, consider the QR decomposition of the channel
matrix, H = QR where Risan N x N upper triangular
matrix with positive diagonal and @) isan N x N unitary
matrix. We then have

lo — Hs||* = [l — QRs|* = |Q"z — Rs||?

Definey = Q*z — Rs and \; = |yy_, 4] fori =
1,2,...N. Note that, due to the upper-triangularity of R,
A; depends only on the unknowns s, ..., SN—i+1. Thus
finding al s that satisfy (2) amounts to finding al s that
satisfy

M+ A+ .4+ Ay < 7P

Thisis achieved by solving successively for

)\1 S T2
Al + AQ S T

(M

A+ A4+ AN r? 3
The point is that the first condition gives an interval for sy,
whereas for any pre-determined sy, ..., Sn—;+2, the i-th
condition gives an interval for s ;1.

We see that the algorithm constructs a search tree where
the branches in the k-th level of the tree correspond to the
lattice points inside the hypersphere of radius r and dimen-
sion k. The complexity of the algorithm depends on the size
of the resulting search tree.

Theradiusr hasto be chosen carefully. If r istoo large,
we obtain too many points, but if it is too small, we get no
points in the hypersphere and have to redo the computation
with alarger r. In [6], a choice of r based on the statistics
of the noiseis suggested. Thisr is proportional to N.

While the sphere decoding algorithm is one of the more
efficient exact methods to solve the maximum likelihood
problem with finite constellations (L-PAM, L-QAM etc.),
it stops giving polynomial complexity at some N which is
in the range of practical interest. The reason for thisis un-
derstood as follows — because the radius r is proportional to

N, the algorithm retains a very large fraction of the lattice
points (in fact nearly all the points) upto some dimension &
beforeit startsto prune the tree. For instance, if N = 1000,
we have r = aN such that upto dimension & = 100 we
keep nearly al the points of the lattice. This already gives
us L19° points to search over and the complexity quickly
becomes exponential.

4. STATISTICAL PRUNING

Taking our cue from this, we modify the algorithm to start
pruning the tree corresponding to the search region much
earlier. The sphere decoder gives exponential complexity
for large N because the first several conditions of (3) are
very loose and do not help in reducing the search space. We
propose instead a schedule of radii 1 <7y < ... <7rpn:

2

)\1 S Ti
A+ A < T%
MAX+-+Ay < 7} (4)

Denote by Dy, theregionin S**! containing points that sat-
isfy the first £ inequalities of (4). (Note that these points
have been determined by finding out values of s, sy_1
..+, SN_k+1 that satisfy the first £ conditions.) We refer to
Dy asD in the following discussion. We can determine al
s € D by aprocedureidentical to that of the original sphere
decoder. The agorithmis

Input: Q, R, z,y =Q*x,7r1,...,TN.
1 Setk=N,r2=r2yy=yn

2. SetUB(sy) = | e || LB(sy) = [Z2d] — 1

k,k Tk, k
sp=sk+ 1. 1f s, <UB(sg) goto5, elsegoto 4.
k=k+1landgoto3.

g > »w

k=k—-1.1fk=0,g0to6.
Else
TkQ = Tk2+1+(7"12\17k+1_T?ka)_(ykﬂ_Tk+1,k+15k+1)2

1" N
Yo =Yk = 2 jmppr ThiSi
Goto 2.

6. Solution found. Save s and go to 3.

Once dl s € D have been determined, we declare the de-
coder output asthe s € D which minimizes ||z — Hs||?.
Notethat the region D isdifferent from the hypersphere.
Depending on the values of r{,rs,...7rN it may include
more or less points than the hypersphere of radius r. To
reduce the complexity, we naturally try to reduce the num-
ber of pointsin D. However, because of the ‘asymmetry’ of




D, it is possible that the lattice point closest to « does not

liein D. Thus, unlike the sphere deoder, we are not doing

ML decoding and are, potentially, incurring a greater BER.
Thus we obtain a tradeoff.

5. PROBABILITY OF ERROR

Let $ be the transmitted point and e = P(5 ¢ D). With

probability P, we make an error by decoding to s # 3.

P. = P.(|5€D)P(5€ D)+ P.(|5¢D)P(5¢D)

P.(|5eD)P(S5€D)+1-¢

P(||lz — Hs|)* < |lv||*for s # 5,s € D|5 € D) -
P(3€D)+e

P(||lz — Hs||> < |jv]|* fors # 5,s € D,5 € D) +¢

P(llx — Hs||” < [[o]|* for s # 3) + €

PEJ\JL_}_E

A

A

where PML is the probability of error with ML decoding.
The first inequality above is very loose and hence this is
not a very tight upper bound. Also, since we are not using
any coding on the transmitted signal, P~ will not go to
zero and so by making e small we can obtain performance
arbitrarily closeto ML.

We now determinee. If s = 3, we havey = Q*v.
Since @ isunitary, Q*v hasthe same statisticsas v i.e. i.i.d.
entries distributed as CA'(0,1). With \; = |yy_;1[?, we
havep,, (\;) = e . Because Ay, ..., Ax areindependent,

Praaroan (A1, Agy ooy Ay) = e~ AafAetdin)

1 — e isthe probability that these \;’s satisfy (4). Therefore

r% Tzzvf(k1+"'+)\N—1)
1—62/ / ef()‘1+m+)‘N)d/\N...d)\1

Changing variablesto u; = 22:1

i %
1—62/ / / e““"duN...d,ul
0 I3 UN -1

If we call thisintegral Iy and integrate out un we get

Ajfori=1,...,N

IN = IN—l — e_TJQV JN_1 (5)
2 2
where Jx_1 = [o7 [” f;}’v" ~ldpn-1...du. Itcanbe
shown that the J;'s satisfy the recurrence
= k—l4+1 TIQJ(rIi g
Te =Y (-1) HJ (6)

=0
We define Iy = 1. Then, using (5) recursively, weget Iy =
1— YN e "t.J,_y. The J;'s are determined by defining
Jo = 1 and using (6) recursively. We thus have

N
€= Ze_T%Jk_l (7
k=1

We use thisto determine theradii rq, . .., ry. For example,
if we choose alinear schedulei.e. r? = (§log N +1i)o2, we
choose § such that e = 0.01 etc.

6. COMPUTATIONAL COMPLEXITY

To compute the complexity of the algorithm, we need to
calculate the number of points that we search over. This
means we need to determine how many pointsin S¥*! are
asoin Dy at every dimensionk = 1,..., N. We then need
to sum over all dimensionsto estimate the number of points
visited during the decoding.

Let s¥ € Skx1, sk ¢ Dy if it satisfies the first & equa-
tions of (4). Once P(s* € Dy) is determined, we can then
sum these probabilitesfor al s* € S¥*! to get the expected
number of pointsin the search space at dimension k. (Note
here that at dimension k& we have determined the values of
SN,---,SN— k+1 that satisfy the first k equations of (4).)

For any s*, the joint distribution of \y,..., \; deter-
mines P(s* € Dk) More specificaly,

P( € Dk (8)
rE—(Ni+ A1)
/ / p/\1,...7>\k(>\1’---7)‘k)d)‘k d)\l

If o2 is the variance of each entry of v (0, = 1), o3
i s ed i A 1 i
is as defined in section (2) and ¢; = PR (s is
the truncation of 5 corresponding to S*! i.e. the vector
[SN, - .-, 8N—it+1]) it can be shown that

P (X)) = % e Z( >k' ci-1—ci)* (9

C

Since the \;’s are independent we have

Pary i (A1s ooy Ak pr (10)
Substituting (9) and (10) into (8), the integral for P(s* ¢
Dy.) can be obtained exactly. However, it gives an expres-
sion that isdifficult to manipulate and sum over. Using some
approximate analysis, it can be shown that

r? r2—(A+FA—1)
/ / p/\17...,/\k()\17---7>\k)d>\k---d>\1
0 0
k X;
~ H/ P (i)
i=170

where X; 2 r? and the X;’s are obtained by solving the

recursion

1+log2 X;1
X, = -9, - ¢
TZ T‘Z*l QCi_l + 2
+20 \/(1 + 10g2 + ci_lXi_l)Q — 4ci—1Xi—1
i—1



It can further be proved that fOXi P, (\;) is well approxi-

mated by min(1, 2). We have omitted the details herein
the interests of space.
We thus have

k
k ~ . Cin'
P(s* € Dy) ~ 1;[ min(1, =) (12)
The complexity is now given by

c =

NE

(expected # of pointsin D) - (flops/point)
N————

=~
Il
—

8k+32

(8k+32) > P(s* € Dy)

skeSkx1

b i X;
®k+32) > [[mina, )

skeSkx1 1

=~
Il
=

I I
CERANE

=~
Il
—

Theabove can be computed efficiently with Monte Carlo
simulations. An exact sum also seems possible and we are
working towardsit.

7. SSMULATIONS
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Fig. 1. Complexity Exponent and BER for N=50 with QPSK
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Fig. 2. Complexity Exponent and BER for N=20 with QPSK

Fig. (1) shows the BER and the complexity exponent
i.e. log C'/log N for the modified decoder. We have N=50
and QPSK signalling. Since the constellation is complex,
it amounts to decoding a 2N=100-dimensional real signal.
We have used r? = (§log N + i)o2 with § chosen to make
e = 0.9. Fig. (1) aso shows the complexity for the origi-
nal sphere decoder. We can see that it requires nearly 502
times as much computation as the modified decoder. It isex-
tremely computationally expensive to generate a BER plot
with this decoder for N=50.

In order to compare the BER, we show resultsfor N=20
and QPSK signalling in Fig. (2). We see that the loss in
BER is quite insignificant and can be compensated by an
increase in SNR of around 0.1dB. From the complexity ex-
ponent we see that the modified decoder runs around 20°-8
times faster.

8. CONCLUSIONS

We have an algorithm that performs nearly as well as ML
decoding and gives significant savings in the computational
complexity. With the modified sphere decoder sub-cubic
complexities are possible for larger values of N in wider
ranges of SNR than before. This is with BERs arbitrarily
close to those for ML decoding. With different schedules
the tradeoff between performance and complexity can be
altered.

It will be interesting to see how this generalizes to sys-
tems that include coding in the signalling scheme.
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