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ABSTRACT

The goal of this work is to extract multiple sourcesignals
when only a single channelobsenation is available. We
proposea new signalseparatioralgorithmbasedon a sub-
spacedecomposition.The obsenationis transformednto
subspacesf interestwith differentsetsof basisfunctions.
A flexible modelfor densityestimationallows anaccurate
modeling of the distributions of the sourcesignalsin the
subspacegndwe developafiltering techniquausingamax-
imum likelihood(ML) approacho matchthe obsenedsin-
gle channeldatawith the decomposition.Our experimen-
tal resultsshonv goodseparatiorperformanceon simulated
mixturesof two musicsignalsaswell astwo voice signals.

1. INTRODUCTION

Extracting multiple sourcesignalsfrom a single channel
mixture is a challengingresearclfield with humerousap-
plications. Varioussophisticatednethodshave beenpro-
posedoverthe pastfew yearsin aresearctareacalledcom-
putationalauditory sceneanalysis(CASA) [1]. Example
proposalsof CASA areauditorysoundsegregationmodels
basedon harmonicstructuresof the soundg[2], automatic
tonemodeling[3], andpsycho-acoustigroupingrules[4].
RecentlyRoweis [5] presenteda refiltering techniquethat
estimategime-varying maskingfilters that localize sound
streamsn a spectro-temporalegion. In his work, sources
are supposediydisjoint in the spectrogranmand a “mask”
whosevalueis binary, 0 or 1, exclusively dividesthe mixed
streamscompletely This approachs, however, applicable
only whentheseassumptionsnatchwell to the data.
Ourwork is motivatedby this spectramasking but free
of the assumptiorthat the spectrogramsre disjoint. Its
main novelty is that the maskingfilters can have ary real
valuein [0,1]. The algorithm recoversthe original audi-
tory streamdsy searchindor the maximizediog lik elihood
of the separatedsignals,computedby the pdfs (probabil-

ity densityfunctions)of the projectionsontothe subspaces.

Empirical obsenationsshow thatthe projectionhistogram
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is extremelysparseandtheuseof generalizedsaussianlis-
tributions[6] yieldsagoodapproximation\We useindepen-
dentcomponentanalysis(ICA) to provide discriminatve,
statisticallyindependensubspaces.The theoreticalbasis
of this approachis “sparse decomposition” [7]. Sparsity
in this casemeansthat only a small numberof instantsin

therepresentatiodiffer significantlyfrom zero. ICA max-
imizesthe sparsityof the subspaceandhencereduceghe
overlapbetweerthe sourcesn the new coordinate.

2. METHOD

We first definethe single channelseparatiorproblem,and
derive the separationalgorithm basedon maximum lik e-
lihood (ML) estimationand the generalizedGaussiampdf
modeling. Secondlywe explain how to obtainstatistically
independensubspacedror simplicity we only considetthe
caseof binarysourcesandl-dimensionakubspaces.

2.1. A SubspaceApproach

Let us considera monauralseparatiorof a mixture of two
signalsobsenedin a singlechannel suchthatthe obsena-
tionis givenby

y'=ah +ab, Vie[LT], @)

wherez! is the " obsenationof theit" source.Notethat
superscriptindicatesamplendicesof time-varyingsignals
andsubscriptsndicatethe sourcedentification.lt is corve-
nientto assumeall the sourcego have zeromeanandunit
variance. The goalis to recover all z¢ givenonly a single
sensorinput yt. The problemis too ill-conditionedto be
mathematicallytractablesincethe numberof unknavnsis
2x T givenonly T' obsenations.

The proposedmethoddecomposeshe sourcesignals
into N disjoint subspaceprojectionsu!, eachfiltered to
containonly enegy from asmallportionof thewholespace:

N
—d
ufp = Plahswi,di) = Y w0, (2)
n=1
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Fig. 1. Block diagramof subspaceveighting. (A) input
signaly? is projectedonto N subspace(B) the projections
vt aremodulatedby weightingsignals); (realvaluedbe-
tween0 andl). (C) theseparatiomprocesdinally terminates
with summingup themodulatedsignals.

whereP is a projectionoperator NV is the numberof sub-
spacesandwy, is thent" coeficientof the kt" coordinate
vectorw, whoselagis dj. In the sameway we definethe
projectionof the mixedsignalas

vh = Pyt wi, dy) = uly + uby, . 3

Supposethe appropriatesubpartsof an audio signal may

lie on a specificsubspacever shorttimes. The separation
is thenequialentto searchingor subspacethatareclose
to the individual sourcesignals. More generally u}, are

approximatedy modulatingthe mixed projectionsv},:

ulp = Apvk, ub, = Aagvj, 4)
ik € [0,1], ApptAop=L1,

where“latent variables”)\;;, areweightson the projections
of subspacek, which is fixed over time. We can adapt
the weightsto bring projectionsin andout of the sourceas

needed.The original sourcesz! arethenreconstructedy

recombiningut,, ut,,..., uty andperformingtheinverse
transformof the projection. Properchoicesof the weights
i, enableheisolationof asinglesourcdrom theinputsig-

nal andthe suppressiownf all othersourcesandbackground
noises.

This approachiillustratedin fig. 1, forms the basisof
mary CASA approachege.g.[2, 4, 5]). Theresultsof such
ananalysisareoftendisplayedasa spectogramthatshows
enegy asa function of time andfrequeng. For example,
it is possibleto distinguishviolin andcello soundgshatare
playedsimultaneouslybasedon the enegy distribution in
the spectrogram. The enegy of a cello soundis usually
concentratean the lower bandsof the spectrogramanda
violin soundis distributedin the higherbands.The projec-
tions,fig. 1-A, actlikelow- andhigh-pasdiltersin thiscase.
Subspaceveightingcanalsobethoughtof asWienerfilter-
ing. If the original sourcesareknown, an“optimal” filters
canbecomputed We mightset\;;, equalto theratio of en-
ergy from onesourcein subspacé: to the sumof enegies
from both sourcesn the samesubspace.
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Fig. 2. lllustration of desiredsubspacesThe arrowvs show
thedirectionsof the maximumenegy concentrations.

2.2. Estimation of Weighting Filters

The estimationof the weights\;; canbe accomplishedy
simply finding the valuesthat maximizethe probability of

the subspac@rojections.The histogramf naturalsounds
revealthat p(ut,) is highly superGaussiar{8]. Therefore
we usea generalizedGaussiarprior [6] that providesan
accurateestimateor symmetricnon-Gaussiadistributions

by fitting theexponent in its simplesform p(s) o exp (— |s|?),
by which we modelp(ut,) as

dik ~y _)\qik
ik

o™ ()

Ing(u;;k) X = |“fk

We constrainthat A;;, € [0,1] and\;x+X2x=1. Thevalue
of Ao dependssolely on A, Sowe needto consider)
only. We definethe objectfunction &% of subspacé by the
joint log probability densityof uf, andub,:

'I’Z 4 Ing(uikvuék)
= logp(uiy) + log p(usy)
X RI — (= ) (©)

Themaximumlikelihoodis achieredwhend ¥ /oA, = 0,
calculatecas

M.1. M.D.
8lIﬂlec — ;\_;1::? taie /_m t g2k
g~ ko™ (1A g™ (7)
R M.D. M.D. ,
M.D.

whereM.D. andM.I. standfor ‘monotonically decreasing
[increasing]’'w.r.t. A1;. Because=q.7is M.D. in theclosed
interval [0, 1], we canalwaysfind auniquesolutionby New-
ton’s method[9].

2.3. Finding IndependentSubspaces

A setof subspacethatwell split targetsourceds essential
in the succes®f the separatioralgorithm. Fig.2 shavs an
exampleof desiredsubspacesTwo ellipsesrepresentwo
differentsourcesywhoseenegy concentrationaredirected
by thearrows. If we projectthe mixtureontothearrows (1-
dim subspaces}he original sourcescanbe recoveredwith
theerrorminimized.
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(b) Projectedlistributionsof learned CA basis

Fig. 3. Exampleplots of subspacerojections.Projections
of musicsignalsaredark points, andthoseof speechsig-
nalsarebright points. (a) Fourier basis: (z, y) pair is the
outputsof 6 non-overlappingoandpaséltersthatdivide the
range625-1000Hz2qually Thecenterfrequencie®f z and
y axesareat thetop of each2D plot. (b) (z,y) pairis the
projectedvaluesof 6 subspacesbtainedby the ICA learn-
ing algorithm. The subspacewumbersof z andy axesare
displayedat thetop of each2D plot.

To obtainanoptimalbasis,we adoptlCA thatestimates
the inverse-translation-operatsuchthat the resulting co-
ordinatecanbe statisticallyasindependenaspossible[8].
ICA inferstime-domairbasisfilters w;, generatinghemost
probableoutputs. The learnedbasisfilters maximizethe
amountof information at the output, so that they consti-
tute an efficient representatiorf the given soundsource.
Fig. 3 displaysthedistributionsof subspacerojectionsonto
Fourierandlearned CA basedor the samedata.Although
the coordinatedook almostuncorrelatedthe distributions
are spreadequally in all directions),there are too much
overlapsin Fourier subspacebetweentwo signalsfor the
weightingin eq.4 to ever work. The ICA coordinatesare
not only uncorrelatedut also non-overlapping;the distri-
butionsof musicsignalsarebroadenedh x axisandshrunk
in y axis, and those of speechsignalsact the other way
round. At the forth column,the musicdistribution encloses
the speechdistribution, meaningthat the enegy of speech
is very little concentratedn bothsubspacem this case.

3. EVALUATION

3.1. Experiment Setup

We have testedthe performanceof the proposedmethod
on single channelmixturesof four different soundtypes;
monauralsignalsof rock andjazz music, maleandfemale
speechWe useddifferentsetsof speectsignalsfor training

thegeneralizedaussiaimodelparameterandfor generat-

ing themixtures.For the mixturegenerationfwo sentences
of the target spealers‘mcpm0’ and ‘fdaw0’, onefor each
spealer, were selectedfrom the TIMIT speechdatabase.
The training setswere designedto have 21 sentencegor
eachgendey 3 eachfrom 7 randomlychosenmalesand 7
randomly chosenfemales. Half of the music soundwas
usedfor training, half for generatingmixtures. All signals
weredownsampledo 8kHz, from original 44.1kHz(music)
and16kHz (speech)Audio files for all the experimentsare
accessiblatthe websité.

The proposedmethoddealswith binary mixturesonly.
All the possiblepairsare{(R,J),(R,M), (R,F),(3,M), (J,F),
(M,F)}, wherethe symbolsR, J, M, F standfor rock and
jazzmusic,maleandfemalespeech.We provide threedif-
ferenttypesof basesslistedin Tablel. For the (R, J) and
(M, F) mixtures,Wm andW s areused.Wmsis adoptedn
theothercasesbecauséheinput mixturescontainbothmu-
sic andspeectsignals. The weightingfilters arecomputed
block-wise, that is, we chopthe input signalsinto blocks
of fixedlengthandassigndifferentweightingfilters for the
individual blocks. The computationof the weightingfilter
at eachblock is doneindependentlyn the otherblocks,so
the weighting becomesmore accurateas the block length
shrinks. However if the block lengthis too short,the com-
putationbecomesinreliable. We performedseparatiorex-
perimentswith varyingthe block lengthto find the optimal
length.

3.2. Experimental Results

We generatedsynthesizednixtureby selectingwo sources
outof thefour andsimply addingthem. Theproposedepa-
rationalgorithmwasappliedto recovertheoriginal sources.

1 http://speech.kaist.ac.kr/jangbal/rbss1/

Table 1. ICA bases.

basis | description trainingdata
Wm | musicbasis (R,J)
Ws speectbasis (M, F)
Wms | musicandspeecibasis| (R,J,M, F)

Table 2. Calculatedr valuesof the separatiorresults. ‘mix’
columnlists the symbolsof the sourceghataremixedto theinput.
Theothercolumnsaretheevaluatedr valuesgroupedby theblock
lengths(in miliseconds).The filters arecomputedat every block.
The lastrow is the averager. Audio files for all the resultsare
accessiblatthewebsite.

mix  basis || 500ms 100ms 50ms 25ms 10ms

R+J  Wm 9.6 11.0 10.9 10.7 10.6
R+M  Wms 0.9 4.7 6.1 5.6 5.4
R+F  Wms 2.9 6.5 7.8 7.4 6.7
J+tM Wms 7.1 7.4 7.7 7.9 8.0
J+tF Wms 6.3 6.0 53 5.2 4.9
M+F Ws 4.0 4.6 4.3 4.3 4.2

Average 5.11 6.69 701 6.84 6.61
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Fig. 4. Separatiorresultsof jazz music and male speechwith
block length50ms. The graphsplot the spectrogram#n logarith-
mic scaletime asz axis andfrequeng asy axis. In vertical or-
derthegraphsin (a) and(b) arefor: original sourcegz:1 andz-),
mixedsignal(z1 + z2), andtherecoveredsignals.Only thelargest
20% of the spectralcomponentgin termsof magnitude)areplot-
ted.
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Fig. 5. Separatiorresultsof maleandfemalespeechwith block
length50ms.

The ssimilarity betweertheinput andoutputsignalsis mea-
suredby signal-to-noiseaatio (SNR),whichis definedby

2

S

snr(s, §) [dB] = 10log,y ==t ——
() )[ ] glOZt(s_é)Qa

wheres is the original sourcesignalands its estimate.To
qualify a separatiorresultwe definea performancemea-
suremenfunctions asthe sumof theincreasesn the SNR
valuesof thetwo recoveredsourcesignals:

(&1, &2; 21, 22) = snr(z1,21) + snr(z2, T2),

wherez; and z; arethe recosered sourcesand the origi-

nal sourcesignals.Table2 reportsthe separatiorresults.

valuesare groupedby block length,andthe optimal block
lengthwas50ms.Generallymixturescontainingmusicwere
recoveredmorecleanlythanmale-femalamixture.

Fig.4 plotsthe spectrogramsf the original sourcesand
therecoveredresultsfor themixture of jazzmusicandmale
speechTherecoveredsignalslook very similar to the orig-
inal sources.

4. CONCLUSIONS

We have presente novel singlechannekignalseparation
algorithmbasedon subspacelecompositiorandmaximum
likelihoodfiltering. The original sourcesare recoseredby
projectingtheinput mixtureontothegivensubspacesnod-
ulatingthe projections,andrecombiningthe processedig-
nals. Themodulationfilters areobtainedby the ML estima-
tion derived by the generalizedSaussiarexpansionof the
projectionpdf. Thesubspaceearnedoy thelCA algorithm
achieve goodseparatiorperformanceExperimentatesults
shavedsuccessfuseparationsf the simulatedmixturesof
rock andjazz music,and male and femalespeechsignals.
The proposednethodhasadditionalpotentialapplications
including suppressiorof environmentalnoisefor commu-
nicationsystemsandhearingaids,enhancinghe quality of
corruptedrecordingsto preprocessindor speechrecogni-
tion systems.On thetheoreticend, We are currentlywork-
ing on alternatve approacheso pdf modelingand object
function,enhancingliscriminay of the subspacesndop-
timizing the ML estimationtowardsreal-time processing.
On the practicalend, we are interestedin comparingour
methodsto othersingle channeldenoisingmethods. Note
thatmostde-noisingmethodsare not suitablefor compari-
sonsincethey arenot suitedfor non-stationangignalssuch
asspeechor musicmixed into the single channel. We are
alsoinvestigatingthe useof this approaclin the AURORA
3 databasevalutiontask.
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