
A SUBSPACE APPROACH TO SINGLE CHANNEL SIGNAL SEPARATION
USING MAXIMUM LIKELIHOOD WEIGHTING FILTERS

Gil-Jin Jang
�
, Te-Won Lee

�
, andYung-HwanOh

�
�
SpokenLanguageLaboratory, CSDivision,KAIST, Daejon305-701,SouthKorea�

Institutefor NeuralComputation,UCSD,La Jolla,CA, USA�
jangbal,yhoh � @speech.kaist.ac.k r, tewon@ucsd.edu

http://speech.kaist.ac.kr/˜j angba l

ABSTRACT

The goal of this work is to extract multiple sourcesignals
when only a single channelobservation is available. We
proposea new signalseparationalgorithmbasedon a sub-
spacedecomposition.The observation is transformedinto
subspacesof interestwith differentsetsof basisfunctions.
A flexible modelfor densityestimationallows an accurate
modelingof the distributions of the sourcesignalsin the
subspaces,andwedevelopafiltering techniqueusingamax-
imum likelihood(ML) approachto matchtheobservedsin-
gle channeldatawith the decomposition.Our experimen-
tal resultsshow goodseparationperformanceon simulated
mixturesof two musicsignalsaswell astwo voicesignals.

1. INTRODUCTION

Extracting multiple sourcesignalsfrom a single channel
mixture is a challengingresearchfield with numerousap-
plications. Varioussophisticatedmethodshave beenpro-
posedover thepastfew yearsin a researchareacalledcom-
putationalauditory sceneanalysis(CASA) [1]. Example
proposalsof CASA areauditorysoundsegregationmodels
basedon harmonicstructuresof the sounds[2], automatic
tonemodeling[3], andpsycho-acousticgroupingrules[4].
RecentlyRoweis [5] presenteda refiltering techniquethat
estimatestime-varying maskingfilters that localize sound
streamsin a spectro-temporalregion. In his work, sources
are supposedlydisjoint in the spectrogramand a “mask”
whosevalueis binary, 0 or 1, exclusively dividesthemixed
streamscompletely. This approachis, however, applicable
only whentheseassumptionsmatchwell to thedata.

Ourwork is motivatedby thisspectralmasking,but free
of the assumptionthat the spectrogramsare disjoint. Its
main novelty is that the maskingfilters canhave any real
value in � ���	�	
 . The algorithm recovers the original audi-
tory streamsby searchingfor themaximizedlog likelihood
of the separatedsignals,computedby the pdfs (probabil-
ity densityfunctions)of theprojectionsontothesubspaces.
Empirical observationsshow that the projectionhistogram

is extremelysparse,andtheuseof generalizedGaussiandis-
tributions[6] yieldsagoodapproximation.Weuseindepen-
dent componentanalysis(ICA) to provide discriminative,
statistically independentsubspaces.The theoreticalbasis
of this approachis “sparse decomposition” [7]. Sparsity
in this casemeansthat only a small numberof instantsin
therepresentationdiffer significantlyfrom zero. ICA max-
imizesthe sparsityof thesubspacesandhencereducesthe
overlapbetweenthesourcesin thenew coordinate.

2. METHOD

We first definethe singlechannelseparationproblem,and
derive the separationalgorithm basedon maximum like-
lihood (ML) estimationand the generalizedGaussianpdf
modeling.Secondly, we explain how to obtainstatistically
independentsubspaces.For simplicity weonly considerthe
caseof binarysourcesand1-dimensionalsubspaces.

2.1. A SubspaceApproach

Let usconsidera monauralseparationof a mixture of two
signalsobservedin a singlechannel,suchthat theobserva-
tion is givenby �
���������� ���� ����������� �"!#
$� (1)

where

� � % is the �'&)( observationof the *+&)( source.Notethat
superscriptsindicatesampleindicesof time-varyingsignals
andsubscriptsindicatethesourceidentification.It is conve-
nient to assumeall thesourcesto have zeromeanandunit
variance.The goal is to recover all

� � % given only a single
sensorinput

� �
. The problemis too ill-conditioned to be

mathematicallytractablesincethe numberof unknownsis,.- ! givenonly ! observations.
The proposedmethoddecomposesthe sourcesignals

into / disjoint subspaceprojections 0 � %21 eachfiltered to
containonlyenergyfromasmallportionof thewholespace:

0 � %21 ��3�4)���%65"7 1 �68 1:9 �<;=>@? �
A 1 >
� �'BDCFEFG >% � (2)
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Fig. 1. Block diagramof subspaceweighting. (A) input
signal

� �
is projectedonto / subspace.(B) theprojectionsc �% aremodulatedby weightingsignalsd %e1 (realvaluedbe-

tween0 and1). (C) theseparationprocessfinally terminates
with summingup themodulatedsignals.

where

3
is a projectionoperator, / is the numberof sub-

spaces,and A 1 > is the f &)( coefficientof the g &)( coordinate
vector 7 1 whoselag is 8 1 . In thesameway we definethe
projectionof themixedsignalas

c �1 �h3�4i� � 5"7 1 �68 1 9 � 0 � � 1 � 0 � � 1kj (3)

Supposethe appropriatesubpartsof an audio signal may
lie on a specificsubspaceover shorttimes. Theseparation
is thenequivalentto searchingfor subspacesthatareclose
to the individual sourcesignals. More generally, 0 � %e1 are
approximatedby modulatingthemixedprojectionsc �1 :

0 � � 1ml� d � 1 c �1 �n0 �� 1ol� d � 1 c �1 (4)d %21 ��� ���	�p
'�qd � 1 � d � 1 � �r�
where“latent variables” d %21 areweightson theprojections
of subspaceg , which is fixed over time. We can adapt
theweightsto bring projectionsin andout of thesourceas
needed.The original sources

� � % arethenreconstructedby
recombining0 � % � �s0 �% � � j	j	j ��0 �% ; andperformingthe inverse
transformof the projection. Properchoicesof the weightsd %21 enabletheisolationof asinglesourcefrom theinputsig-
nalandthesuppressionof all othersourcesandbackground
noises.

This approach,illustratedin fig.1, forms the basisof
many CASA approaches(e.g.[2, 4, 5]). Theresultsof such
ananalysisareoftendisplayedasaspectrogramthatshows
energy asa function of time andfrequency. For example,
it is possibleto distinguishviolin andcello soundsthatare
playedsimultaneously, basedon the energy distribution in
the spectrogram.The energy of a cello soundis usually
concentratedon the lower bandsof thespectrogram,anda
violin soundis distributedin thehigherbands.Theprojec-
tions,fig.1-A, actlikelow- andhigh-passfiltersin thiscase.
Subspaceweightingcanalsobethoughtof asWienerfilter-
ing. If the original sourcesareknown, an “optimal” filters
canbecomputed.We mightset d %21 equalto theratioof en-
ergy from onesourcein subspaceg to thesumof energies
from bothsourcesin thesamesubspace.
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Fig. 2. Illustrationof desiredsubspaces.Thearrows show
thedirectionsof themaximumenergy concentrations.

2.2. Estimation of Weighting Filters

Theestimationof theweights d %21 canbe accomplishedby
simply finding the valuesthat maximizethe probability of
thesubspaceprojections.Thehistogramsof naturalsounds
reveal that t 4 0 � %21 9 is highly super-Gaussian[8]. Therefore
we usea generalizedGaussianprior [6] that provides an
accurateestimatefor symmetricnon-Gaussiandistributions
byfitting theexponentu in itssimplestform t 4+v 9rwyx	z
{ 4}|�~ v
~ � 9 ,
by which wemodelt 4 0 � %21 9 as�e�:� t 4 0 � %e1 9kw |��� 0 � %e1 ��

�'� E l� | d �'� E%e1 ~ c �1 ~ �'� E j (5)

We constrainthat d %21 ��� ���	�	
 and d � 1 � d � 1 � � . Thevalue
of d � 1 dependssolely on d � 1 , so we needto considerd � 1
only. Wedefinetheobjectfunction � � 1 of subspaceg by the
joint log probabilitydensityof 0 � � 1 and 0 � � 1 :

� � 1��	�'�� �e�:� t 4 0 � � 1 �"0 � � 1 9l� �e�:� t 4 0 � � 1 9 � �e�:� t 4 0 � � 1 9� | d ��� E� 1 ~ c �1 ~ ��� E�|h4 � | d � 1:9 �'� E�~ c �1 ~ �'� E j (6)

Themaximumlikelihoodis achievedwhen ��� � 1@� ��d � 1 � � ,
calculatedas

��� � 1��d � 1
��| M.I.� �F� �d ��� E B �� 1 � u � 1 ~ c �1 ~ ��� E� �F� �

M.D.

� M.D.� �p� �4 � | d � 1�9 �'� E B � � u � 1 ~ c �1 ~ �'� E� �F� �
M.D.� �p� �

M.D.

� (7)

whereM.D. andM.I. standfor ‘monotonicallydecreasing
[increasing]’w.r.t. d � 1 . Becauseeq.7 is M.D. in theclosed
interval � ���	�	
 , wecanalwaysfind auniquesolutionby New-
ton’smethod[9].

2.3. Finding IndependentSubspaces

A setof subspacesthatwell split targetsourcesis essential
in thesuccessof theseparationalgorithm. Fig.2 shows an
exampleof desiredsubspaces.Two ellipsesrepresenttwo
differentsources,whoseenergy concentrationsaredirected
by thearrows. If we projectthemixtureontothearrows(1-
dim subspaces),theoriginal sourcescanberecoveredwith
theerrorminimized.
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(a)Projecteddistributionsof Fourierbasis
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(b) Projecteddistributionsof learnedICA basis

Fig. 3. Exampleplotsof subspaceprojections.Projections
of musicsignalsaredark points,andthoseof speechsig-
nalsarebright points. (a) Fourier basis:

4i� � � 9 pair is the
outputsof 6 non-overlappingbandpassfiltersthatdividethe
range625-1000Hzequally. Thecenterfrequenciesof

�
and

�
axesareat the top of each2D plot. (b)

4i� � � 9 pair is the
projectedvaluesof 6 subspacesobtainedby theICA learn-
ing algorithm. The subspacenumbersof

�
and

�
axesare

displayedat thetop of each2D plot.

To obtainanoptimalbasis,weadoptICA thatestimates
the inverse-translation-operatorsuchthat the resultingco-
ordinatecanbestatisticallyasindependentaspossible[8].
ICA inferstime-domainbasisfilters 7 1 generatingthemost
probableoutputs. The learnedbasisfilters maximizethe
amountof information at the output, so that they consti-
tute an efficient representationof the given soundsource.
Fig.3 displaysthedistributionsof subspaceprojectionsonto
FourierandlearnedICA basesfor thesamedata.Although
the coordinateslook almostuncorrelated(the distributions
are spreadequally in all directions), there are too much
overlapsin Fourier subspacesbetweentwo signalsfor the
weighting in eq.4 to ever work. The ICA coordinatesare
not only uncorrelatedbut alsonon-overlapping;the distri-
butionsof musicsignalsarebroadenedin

�
axisandshrunk

in

�
axis, and thoseof speechsignalsact the other way

round.At theforth column,themusicdistribution encloses
the speechdistribution, meaningthat the energy of speech
is very little concentratedon bothsubspacesin this case.

3. EVALUATION

3.1. Experiment Setup

We have testedthe performanceof the proposedmethod
on single channelmixturesof four different soundtypes;
monauralsignalsof rock andjazzmusic,maleandfemale
speech.Weuseddifferentsetsof speechsignalsfor training
thegeneralizedGaussianmodelparametersandfor generat-

ing themixtures.For themixturegeneration,two sentences
of the target speakers ‘mcpm0’ and‘fdaw0’, onefor each
speaker, were selectedfrom the TIMIT speechdatabase.
The training setswere designedto have 21 sentencesfor
eachgender, 3 eachfrom 7 randomlychosenmalesand7
randomlychosenfemales. Half of the music soundwas
usedfor training,half for generatingmixtures. All signals
weredownsampledto 8kHz,from original44.1kHz(music)
and16kHz(speech).Audio files for all theexperimentsare
accessibleat thewebsite1.

The proposedmethoddealswith binary mixturesonly.
All thepossiblepairsare � (R,J),(R,M), (R,F),(J,M), (J,F),
(M,F) � , wherethe symbolsR, J, M, F standfor rock and
jazzmusic,maleandfemalespeech.We provide threedif-
ferenttypesof basesaslistedin Table1. For the(R, J) and
(M, F) mixtures,� m and� sareused.� msisadoptedin
theothercases,becausetheinputmixturescontainbothmu-
sic andspeechsignals.Theweightingfilters arecomputed
block-wise,that is, we chop the input signalsinto blocks
of fixedlengthandassigndifferentweightingfilters for the
individual blocks. The computationof the weightingfilter
at eachblock is doneindependentlyon theotherblocks,so
the weightingbecomesmoreaccurateas the block length
shrinks.However if theblock lengthis too short,thecom-
putationbecomesunreliable.We performedseparationex-
perimentswith varyingtheblock lengthto find theoptimal
length.

3.2. Experimental Results

Wegeneratedasynthesizedmixturebyselectingtwosources
outof thefour andsimplyaddingthem.Theproposedsepa-
rationalgorithmwasappliedto recovertheoriginalsources.

1 http://speech.kaist.ac.kr/˜jangbal/rbss1/

Table 1. ICA bases.
basis description trainingdata�

m musicbasis � R, J �
s speechbasis � M, F  �
ms musicandspeechbasis � R, J,M, F 

Table 2. Calculated¡ valuesof the separationresults. ‘mix’
columnlists thesymbolsof thesourcesthataremixedto theinput.
Theothercolumnsaretheevaluated¡ valuesgroupedby theblock
lengths(in miliseconds).Thefilters arecomputedat every block.
The last row is the average¡ . Audio files for all the resultsare
accessibleat thewebsite.

mix basis 500ms 100ms 50ms 25ms 10ms

R+J
�

m 9.6 11.0 10.9 10.7 10.6
R+M

�
ms 0.9 4.7 6.1 5.6 5.4

R+F
�

ms 2.9 6.5 7.8 7.4 6.7
J+M

�
ms 7.1 7.4 7.7 7.9 8.0

J+F
�

ms 6.3 6.0 5.3 5.2 4.9
M+F

�
s 4.0 4.6 4.3 4.3 4.2

Average 5.11 6.69 7.01 6.84 6.61
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Fig. 4. Separationresultsof jazz music andmale speechwith
block length50ms.Thegraphsplot thespectrogramsin logarith-
mic scale,time as ¢ axisandfrequency as £ axis. In vertical or-
derthegraphsin (a) and(b) arefor: original sources( ¢�¤ and ¢�¥ ),
mixedsignal( ¢ ¤§¦ ¢ ¥ ), andtherecoveredsignals.Only thelargest
20%of thespectralcomponents(in termsof magnitude)areplot-
ted.
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Fig. 5. Separationresultsof maleandfemalespeechwith block
length50ms.

Thesimilarity betweentheinput andoutputsignalsis mea-
suredby signal-to-noiseratio (SNR),which is definedby

¨}©�ª 4«v � ¬v 9 � ­�®�
 � �¯� �°� � �²± ³ � v �
³ � 4«v´| ¬v 9 � �

where

v
is theoriginal sourcesignaland ¬v its estimate.To

qualify a separationresult we definea performancemea-
surementfunction µ asthesumof theincreasesin theSNR
valuesof thetwo recoveredsourcesignals:

µ 4 ¬� � �$¬� � 5 � � � � � 9 � ¨}©�ª 4i� � �$¬� � 9 � ¨}©�ª 4)� � �
¬� � 9 �
where ¬� % and

� % are the recoveredsourcesand the origi-
nal sourcesignals.Table2 reportstheseparationresults. µ
valuesaregroupedby block length,andthe optimal block
lengthwas50ms.Generallymixturescontainingmusicwere
recoveredmorecleanlythanmale-femalemixture.

Fig.4 plotsthespectrogramsof theoriginalsourcesand
therecoveredresultsfor themixtureof jazzmusicandmale
speech.Therecoveredsignalslook verysimilar to theorig-
inal sources.

4. CONCLUSIONS

We have presenteda novel singlechannelsignalseparation
algorithmbasedon subspacedecompositionandmaximum
likelihoodfiltering. The original sourcesarerecoveredby
projectingtheinputmixtureontothegivensubspaces,mod-
ulatingtheprojections,andrecombiningtheprocessedsig-
nals.Themodulationfiltersareobtainedby theML estima-
tion derived by the generalizedGaussianexpansionof the
projectionpdf. Thesubspaceslearnedby theICA algorithm
achievegoodseparationperformance.Experimentalresults
showedsuccessfulseparationsof thesimulatedmixturesof
rock andjazz music,andmaleandfemalespeechsignals.
The proposedmethodhasadditionalpotentialapplications
including suppressionof environmentalnoisefor commu-
nicationsystemsandhearingaids,enhancingthequality of
corruptedrecordings,to preprocessingfor speechrecogni-
tion systems.On thetheoreticend,We arecurrentlywork-
ing on alternative approachesto pdf modelingand object
function,enhancingdiscriminacy of thesubspaces,andop-
timizing the ML estimationtowardsreal-timeprocessing.
On the practicalend, we are interestedin comparingour
methodsto othersinglechanneldenoisingmethods.Note
thatmostde-noisingmethodsarenot suitablefor compari-
sonsincethey arenotsuitedfor non-stationarysignalssuch
asspeechor musicmixed into the singlechannel.We are
alsoinvestigatingtheuseof this approachin theAURORA
3 databaseevalutiontask.
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