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ABSTRACT

In this paperwe investigatethe problemof channelequalization
in an” e—contaminated’impulsive noiseervironments.We shav
thatthe equalizercanbe structurednto a Network of KalmanFil-
ters(NKF) operatingin parallel. It is basedon a statespacede-
scriptionof the communicatiorsystem,the approximationof the
a posteriori pdf of the plantnoise(relatedto the transmittedsym-
bolsin our case)by a WeightedSumof GaussiarfWSG) density
functions,andtheknowledgeof thepdf of the” e— contaminated”
noisewhich canbewritten asa sumof two Gaussiansveightedby
the probability of appearancef impulsive andGaussiamoisesin
the obserations. The usefulinformation can be extractedfrom
the received sampleat ary time k& even whenimpulsesoccurby
exploiting the knowledge of the probability of appearencef the
impulsive noiseandits variancewithout usingary clipping or lo-
calisationmechanisnfor impulsesin obserations. Simulations
resultsshav thatthe performancef the proposedlgorithmis less
vulnerableto theimpulsive noiseandis morerobustthanthe con-
ventionalNKF algorithmbasedon theimpulsesclipping.

1. INTRODUCTION

High speediatatransmissiormver communicatiorchannelss sub-
ject to intersymbolinterferenceand noise. Equalizationis the
processwvhich reconstructshe transmitteddatafrom the receved
messageombattingthe distortion and interferenceof the com-
municationlink. The linear trans\ersalfilter is the simplestar-
chitecturein the classof symbol-by-symbokqualizers.The opti-
mal solution,is thebayesiarapproactwhichis alsothemaximum
a posteriori symbol-by-symboldecisionequalizer[1]. In [2] an
equalizerbasedon a Network of Kalman Filters (NKF) is pro-
posed.Theseapproachesf equalizatiomprocesseareconsidered
underGaussiamoiseassumptionThis oftenleadsto analytically
tractablesolutions. Unfortunately in mary communicatiorchan-
nels, suchas, urban,indoor radio and undervater acousticchan-
nels,the ambiantnoise,throughexperimentalmeasurementsx-
hibits Gaussianaswell asimpulsive characteristic§3][4].

It is well known thatnon-Gaussianoisecancausesignificantper
formancedegradationin corventionalsystemsasednthe Gaus-
sianassumptiori3], especiallythefiltering techniquedbasedon a
Kalmanfilter [5]. So,it is necessaryo designanequalizemwhich
canoperateefficiently againsimpulsive noise. Therefore various
robustalgorithmsareworkedoutin orderto increaseheefficiency
of Kalman approachesvherethe distribution of the statenoise,
usedfor the stateestimationdeviatesfrom the Gaussiardistribu-
tion. The typical methodusedis the nonlinearrecever suchas

0-7803-7663-3/03/$17.00 ©2003 IEEE

the hard-limiting recever basedon a Hubers min-maxapproach,
[5][6].

In this paper we dealwith the ” e—contaminated”noise model
[5][6] (anadditive combinatiorof Gaussiarandimpulsive noises).
We proposea new robust equalizerstructuredinto a Network of
KalmanFilters(NKF) operatingn parallelwhich doesnotuseary
clipping or a localisationmechanisnfor impulsesin thereceved
signals. It is basedon a statespacedescriptionof the communi-
cation system,the approximationof the a posteriori probability
densityfunction (pdf) of the plant noise(relatedto the transmit-
ted symbolsof userin our case)by a WeightedSumof Gaussian
(WSG) density functions, and the knowledge of the pdf of the
" e— contaminated”noisewhich can be written asa sum of two
Gaussiansveightedby the probability of appearancef impulsive
and Gaussiamoisesin the obserations. The aim is to estimate
the statevector (consistingof the last transmittedsymbols)from
thereceved messagén a Minimum MeanSquareError (MMSE)
sense EachKalmanfilter parameterareadjustedisingonenoise
parameter(varianceand contaminationconstant)and one Gaus-
siantermin the a posteriori pdf approximatiorof the plantnoise.
So,we will have 2 x @ Kalmanfilters working in parallel,where
Q is the numberof pointsin the signalconstellation.The perfor
manceof the new algorithmareevaluatedusingsimulations.

The outline of this paperis asfollows. The next sectionpresents
thestate-spacdescriptiorandthenonGaussiamoisemodel.Sec-
tion 3 describeour new robust equalizerbasedon a Network of
Kalmanfilters. Section4 gives somesimulationresults. Finally,
section5 draws our conclusion.

2. STATE SPACE DESCRIPTION AND NON GAUSSIAN
NOISE MODEL

The basebanaquivalent channelof interestis composedf the
transmitterthe physicalchannelandtherecever. Thetransmitted
sequencatthechanneinput {d(k)} is composedf independent
symbolsbelongingto afinite setA = {d,,i = 1, ..., Q} whichis
specificto thetype of modulationusedandhaving varianceo?. In
the caseof a channeimodeledby a finite memorylinearfilter, the
recevedsignalcanbewritten as

y(k) = C"D(k) + w(k) + b(k) @

where

O C =lcycq,--
pulseresponse,
¢ D(k) = [d(k),...,d(k— M +1)]" is formed by the last M
transmittedsymbols,

. eu—1]" arethecoeficientsof thechanneim-
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¢ w(k) is an additive white Gaussiamoise (AWGN) with zero
meanandvariances?, andb(k) is theimpulsive noise.
In thefollowing, theimpulsenoiseis modeledasin [7] by:

b(k) = y(k)g(k)

where {~y(k)} standsfor a Bernoulli processa sequencef ze-
roesand oneswith p(y = 1) = ¢, wheree is the contamination
constantandg(k) is a white Gaussiamoisewith zeromeanand
variances? suchasel < 7.

Under this model, the probability density of the channelnoise
v(k) =w(k) + b(k) canbeexpresseds

p(u(k)) = (1 —eN(0,02) +eN(0,0;402)  (2)

whereN(m o) istheGaussiamensitywith meanm,, andvari-
ances?. {v( )} is calleda” e— contaminated’noisesequence
[5][6]. The” e— contaminated’channelmodelis hereexpressed
via boththeobsenationequation(1) andthefollowing stateequa-
tion,

D(k) =FD(k— 1) + Gd(k) (3)

whereF is the M x M shift matrix,andG is the M x 1 vector
givenby,

000...0 1

100...0 0
F=|010...0 G =

0...010 0

Accordingto this formulation,theequalizatioris equivalentto es-
timatingthe statevectorD (k) from the obserationof thechannel
outputY® = [y(k), y(k — 1), ..., y(0)] . We notethattheestima-
tion of d(k) canbe obtainedat somedelayectime (k — r), where
0 <r < M — 1. This problemhasbeenresohed by the Kalman
obserer. However, thefiltering techniquesbasedon anordinary
Kalmanfilter, completelylosetheir optimal propertiesbecausef
outliersin theobsenationsto beprocessefb]. Thereforeto cope
with this problem,mary kindsof "robustto impulsive noise” esti-
mationalgorithmshave widely beenstudied [5][6] andreferences
within. The typical methodfor the removal of impulsive noiseis
emplgying the Hubers min-maxapproach.The performance®f
thesealgorithmsdependn thethresholdvaluewhichis generally
unknawn.

In the next sectionwe shav how we canexploit the knowledgeof
impulsive noiseparameterén orderto have a robustequalization
method.

3. ROBUST RECURSIVE STATE ESTIMATION BASED
ON A NETWORK OF KALMAN FILTERS

Theideais to computethea posterioripdf of thestate p(D (k)| Y*),
by approximatingt by a WeightedSumof Gaussian.The recur
sionon p(D(k)|Y*) is explicitely given by the following Bayes
relation

p(DE)Y") = c,pDE)Y " py(k)DK) (@)

with L= p(y(k)[Y*~") whereY*~" = [y(k — 1), ..., y(0)]
The likelihood of the obseration p(y(k)|D(k)) is easily deter
minedif thenoisepdfis known.

Usingtheapproximatiorof thepredictecbdf by aWSG,p(D (k)| Y1),

leadsto thefollowing expressior{8],

£ (k)
> a; (k)N (D(k)—D;(klk — 1),P;(kl|k — 1))
=1 (5)

with {D; (k|k — 1.)}1':1,___.,5' *) gnd{Pi(k|k — 1)}¢=1,___,§, () are
vectorsand matricesof dimensionM x 1 and M x M, respec-
tively, and,wherethematricesP; (k|k — 1) approachthezeroma-
trix.

Fromequation(2), thelik elihoodof theobserationp(y(k)|D(k))

canbewritten asa sumof two Gaussians,

p(D(k)[Y*) =

p(y(k)ID(K)) ~(1 — )N (y(k)~C'D(k),07,)+  (6)

eN(y(k) — C"D(k),07)

By replacmg(G) (5)in (4) andby denotingh1 =1 —¢, A2 = ¢
07 =02, andos = of weget,

g 2

pPDE)YY) =c, S 3 Na(k)A] (7)

i=1 j=1

whereAl= N(D(k)—D; (k|k —
N(y(k)—C"D(k),q?).

1),P;(k|k — 1)) x

Basedonthedevelopmentdonein [2], by rewriting

CT'D(k) = CTD;(k|k — 1) + (D(k) — D;(k|k — 1))TC (8)

andby defining

C‘:;T] _ ©)

P ;(klk) = [Pi(klk D

we obtain,usingtheinversionmatrix lemmaon (9),

P, ;(klk) = K. ;(k)CTP;(k|k — 1) (10)

K, (k) =

P;(klk—1)—

2 T -1
Pi(klk —1)C [aj + CTP; (k|k — 1)0] 11)
By introducing,

D ;(klk) = Di(klk — 1) + K ; (k) [y(k) — CTDi(klk — 1)]
andby doingsomerearrangemenis equationswe canshawv that

p(D(k)|Y*) canbewrittenasa WSG:

. 26’ (k)=¢(k)
pDE)|Y") = >

1=(,5)
1=(1,1)

oy (k)N (D (k)—D (k|k), P (k|k))

12)




with
Dy (klk) = Di(klk — 1)+Ki,; () [y(k) — C"Di(klk — 1)]
(13)
Njai(k)B, ; (k)

Y20 N al(k)B; (k)
Bi.s (K)=N (y(k)—CT D (k|k — 1), 0> +CTP; (k|k — 1)C)

al:(i,j)(k) =

2 T -1
K ;(k)=P;(k|k — 1)C [aj + CTP; (k|k — 1)0]

P ; (k|k)=P;(k|k — 1)K, ; (k)C"P;(k|k — 1)
(14)

We have thenestablishedhe way of computingthe densityfunc-
tion p(D(k)|Y*) asa sumof Gaussiardensityfunctionswhen
the densityfunctionp(D (k)| Y*~1) is asumof Gaussiardensity
functions.

The predictedpdf p(D(k + 1)|Y*) for the next iterationis deter
minedaccordingto this Bayesiarrelation:

p(D(k +1)[Y¥) = [ p(D(k)|Y*) p(D(k + 1)|D(k))dD (k)
with p(D(k + 1)|D(k)) = p(Gd(k + 1))

Usingthe assumptiorof i.i.d symbolswe canwrite,

p(Gd(k+1) =22, p,N(Gd(k +1) — Gd,,Q,)

wherep,= andQq = eoIn (€0 < 1).

By denotingD; ; o(k + 1|k) = FD; ;(k|k) + Gd, and
Pijq(k+1|k) = FP;; (k|[k)FT + Qq
we canshav thatp(D(k + 1)|Y*) canbeobtainedas,

gkt
pPDE+D|Y) = > ap(k+1)x (15)

m=1

N(D(k+1)D,  (k+ 1|k), P, (k+ 1]k))

with m = (1,q) = (i, j, ), & (k+1) = £(k) x Q, am (k+1) =
Pqacy (k)

Finally, we canresumethealgorithmasfollows,

Prediction

gk)=¢E(k—-1)xQ
(k) = pooy(k — 1) avecm = (I,q) = (i, , q)
Do (klk — 1)= FD; ; (k — 1|k — 1) + Gd,

Pun(klk—1) =PF, (k- 1|k - 1)F"+Q,

Estimation

£(k) = 2¢ (k)

D, j,q(klk) =Di,%,q(k|k -+
Kijq(k) [y(k) — CTDyjq(klk —1)]

Pijq(klk) =Pijq(klk — 1)—Ki 4 (k)C'Pi 4 (klk — 1)

P; ;4 (R[F—1)C

Kija(k) =Cricte’  ,ak Do

i
N (BB g (k)
ai,j,q(k) T2 (k—1)Q ,
Ajai’j’q(k)ﬁi,j,q(k)

i,4,9

Bij.a(k) =N (y(k)—C" Dy ;o (klk — 1),
0;+C Py 4(klk —1)0)

Then,the MMSE estimationof the statevector E(D(k)[Y*"), is

R £(k)
Dunse(klk) =) jq(k)Di,jq(klk) (16)

i,3,9

We can seethat eachpredictedstate, D; ; ,(k|k), at the output
of the Kalmanfilter indexed by (3, 7, q) is weightedby a coefi-
cientay ; , thatdependson the probability of appearancef the
Gaussiarandimpulsive noiseg(1—e ande resp.)andtheerrorco-
varianceof eachKalmanfilter (3;,;,,). Whenanimpulseoccursin
therecevedsampley(k), the 3;,1,, termstendto zero,otherwise,
the 8;,2,4 termstendto zero. So,the algorithmextractsthe infor-
mation symbol even whenthe impulsesare presentwithout need
of ary threshold.In thatway, the impulsesdo not affect the good
behaior of thealgorithm.

Remark: If e = 0, we obtainthe original NKF-basedequalizer
publishedn [2]

In abinarytransmissionthe equalizeutputwith adelayr,
durse(k — r), is givenby the sign of the (r + 1) component
of theestimatedstate.The equation(16) provesthatthe estimated
state,in an MMSE sensejs a corvex combinationof the outputs
of £(k) parallelKalmanfilters. The covariancematrix of the esti-
mationerroris

&(k)
P(k) =) jq(Pijq(klk)+ 17)

(Di.j.q(k|k) — D(k|k)) (Dij.q(klk) — D(k|k))")

As establishedibore, the complity of the algorithm, evaluated
by £(k), grows exponentiallythroughiterations. To male it of

practicalusefor on-line processingthe sumgiving p(D(k)|Y*)

in (12) will be constrainedo containonly oneterm after the fil-

tering step,let £ (k) = 1. Thisis doneby settingD;(k|k) to the
value of the estimatedstateD a5 (k), Pi(k|k) to P(k) and
ai,j,4(k) to1 for thenext predictionstep.

This approximatioris rationalbecausé¢he a posterioristatepdf is

assumedo belocalizedaroundthe MMSE estimationif theequal-
izer performscorrectly It reduceshe numberof parallelKalman
filtersfrom £(k) to 2Q.

4. SSIMULATION RESULTS

In this section,we give somesimulationresultsfor the proposed
algorithmbasedon a network of Kalmanfilters for a BPSKmod-
ulation alphabet(@Q = 2). In figure 1, we include a channelC,
which is arealizationof thetypical channeModel A specifiedby
Hiperlan2standard.The delayestimationr is fixedto 8 symbols.
We plot the BER obtainedfrom threemethods. In the first, we
choosee = 0, so, we have the influenceof the Gaussiamoise




only. In the secondandthird curves, the contaminatiorparame-

ter or the probability of impulsive noiseis chosere = 8 x 1073
2

with j—g = 500. We emplay our algorithmdescribedn section3

andthe classicaNKF [2] with afixedthreshold asis donein [6],

in orderto preventthe divergenceof thealgorithmwhenimpulses

occur

—&— After equalization and cancellation of impulsive noise
with a fixed threshold

—— Without impulsive noise

—b— After equalization and cancellation of impulsive noise
by a Network of Kalman Filters

BER

107
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Fig. 1. BER performancevhenwe considera channelC

We cannotice,the good behaior of our methodunderthesecir-
cumstancessincethe curwe afterequalizatiorandcancellatiorof
impulsive noiseis only mamginally differentfrom the curve ob-
tainedwith Gaussiamoiseonly. We canalsoremarkthatthero-
bustNKF outperformghe NKF+thresholdmethod.It is clear that
its performancalependn the valueof this threshold.

In figure 2, we shav the efficiengy of impulsenoise cancella-

—— Gaussian channel (without impulsive noise)
—— After impulsive noise cancellation

Distorsion (dB)

0 1 2 3 4 5 6 7 8 9 10
SNR (dB)

Fig. 2. Efficiengy of impulsive noisecancellationn the proposed
structure

tion in the proposedstructure. We emplg a channelC = 1

in orderto cancelthe effect of the channeland highlight the im-
pactof impulsive noiseon obserations.We plot E, /M SE (dB)
versusSNR = E; /o, (dB) where E; is the symbol enegy.
TheMSEis computechetweerthe estimatedsymbols 4, obtained
from the obserationscorruptedby both Gaussiarandimpulsive
noises(e # 0), andthe received signalin the caseof Gaussian
noiseonly, d + b. So, M SE canbewrittenasM SE = E{||d +
b — d||?}. Thereforejf thealgorithmcancelsheeffect of theim-
pulsive noise,we will have a reliable estimationof the transitted
data(i.e. d=d ). So,thevalueof theMSE will tendto the Gaus-
siannoisevariances?2,. From figure 2, we noticethat the robust
NKF equalizeris not vulnerableto the impulsive noiseand can-
celsits effect sinceits curve closelyfollows the curve containing
the Gaussiamoiseonly.

5. CONCLUSION

In this paper we have describedh new equalizertbasedon a NKF
givenustheoptimal MMSE estimationof the statevectorformed
by the last M transmittedsymbols. It is basedon a state-space
descriptionof the communicationsystem,the approximationof
the densityfunctionsof the datasignalsby a WSG densityfunc-
tionsandtheknowledgeof the pdf of themeasurmemoisewhich
canbewritten astwo Gaussiartermsweigthedby the probability
of appearancef Gaussiarandimpulsive noises.In this approach,
neitherclipping norimpulsescorrectionmechanisnareemplo/ed.
Simulationresultsshav thatthe proposedilgorithmis lessvulner
able to the impulsive noise and presentsa betterbehaior com-
paredto the NKF+thresholdscheme.Mary extensionsareunder
considerationin orderto increasehe practicalusefulnessf this
approach.
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