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ABSTRACT

In this paperwe investigatethe problemof channelequalization
in an” ��� contaminated”impulsive noiseenvironments.We show
thattheequalizercanbestructuredinto a Network of KalmanFil-
ters(NKF) operatingin parallel. It is basedon a statespacede-
scriptionof thecommunicationsystem,theapproximationof the
a posterioripdf of theplantnoise(relatedto thetransmittedsym-
bols in our case)by a WeightedSumof Gaussian(WSG)density
functions,andtheknowledgeof thepdf of the” ��� contaminated”
noisewhichcanbewrittenasasumof two Gaussiansweightedby
theprobabilityof appearanceof impulsive andGaussiannoisesin
the observations. The useful information can be extractedfrom
the received sampleat any time

�
even whenimpulsesoccurby

exploiting the knowledgeof the probability of appearenceof the
impulsive noiseandits variancewithout usingany clipping or lo-
calisationmechanismfor impulsesin observations. Simulations
resultsshow thattheperformanceof theproposedalgorithmis less
vulnerableto theimpulsive noiseandis morerobustthanthecon-
ventionalNKF algorithmbasedon theimpulsesclipping.

1. INTRODUCTION

Highspeeddatatransmissionovercommunicationchannelsissub-
ject to intersymbol interferenceand noise. Equalizationis the
processwhich reconstructsthetransmitteddatafrom thereceived
messagecombattingthe distortion and interferenceof the com-
municationlink. The linear transversalfilter is the simplestar-
chitecturein theclassof symbol-by-symbolequalizers.Theopti-
malsolution,is thebayesianapproachwhich is alsothemaximum
a posteriori symbol-by-symboldecisionequalizer[1]. In [2] an
equalizerbasedon a Network of Kalman Filters (NKF) is pro-
posed.Theseapproachesof equalizationprocessesareconsidered
underGaussiannoiseassumption.This oftenleadsto analytically
tractablesolutions.Unfortunately, in many communicationchan-
nels,suchas,urban,indoor radio andunderwateracousticchan-
nels,theambiantnoise,throughexperimentalmeasurements,ex-
hibits Gaussian,aswell asimpulsive characteristics[3][4].
It is well known thatnon-Gaussiannoisecancausesignificantper-
formancedegradationin conventionalsystemsbasedon theGaus-
sianassumption[3], especiallythefiltering techniquesbasedon a
Kalmanfilter [5]. So,it is necessaryto designanequalizerwhich
canoperateefficiently againstimpulsive noise.Therefore,various
robustalgorithmsareworkedout in orderto increasetheefficiency
of Kalman approacheswherethe distribution of the statenoise,
usedfor thestateestimation,deviatesfrom theGaussiandistribu-
tion. The typical methodusedis the nonlinearreceiver suchas

thehard-limitingreceiver basedon a Huber’s min-maxapproach,
[5][6].
In this paper, we deal with the ” ��� contaminated”noisemodel
[5][6] (anadditivecombinationof Gaussianandimpulsivenoises).
We proposea new robust equalizerstructuredinto a Network of
KalmanFilters(NKF) operatingin parallelwhichdoesnotuseany
clipping or a localisationmechanismfor impulsesin thereceived
signals. It is basedon a statespacedescriptionof the communi-
cation system,the approximationof the a posteriori probability
densityfunction (pdf) of the plant noise(relatedto the transmit-
tedsymbolsof userin our case)by a WeightedSumof Gaussian
(WSG) density functions, and the knowledge of the pdf of the
” ��� contaminated”noisewhich canbe written asa sumof two
Gaussiansweightedby theprobabilityof appearanceof impulsive
andGaussiannoisesin the observations. The aim is to estimate
the statevector(consistingof the last transmittedsymbols)from
thereceivedmessagein a Minimum MeanSquareError (MMSE)
sense.EachKalmanfilter parametersareadjustedusingonenoise
parameter(varianceandcontaminationconstant)and oneGaus-
siantermin thea posterioripdf approximationof theplantnoise.
So,we will have ���	� Kalmanfilters working in parallel,where� is thenumberof pointsin thesignalconstellation.Theperfor-
manceof thenew algorithmareevaluatedusingsimulations.
Theoutlineof this paperis asfollows. Thenext sectionpresents
thestate-spacedescriptionandthenonGaussiannoisemodel.Sec-
tion 3 describesour new robust equalizerbasedon a Network of
Kalmanfilters. Section4 givessomesimulationresults. Finally,
section5 draws ourconclusion.

2. STATE SPACE DESCRIPTION AND NON GAUSSIAN
NOISE MODEL

The basebandequivalent channelof interestis composedof the
transmitter, thephysicalchannelandthereceiver. Thetransmitted
sequenceat thechannelinput 
���
 ����� is composedof independent
symbolsbelongingto afinite set ����
������������ ��!�!�!��"� �

whichis
specificto thetypeof modulationusedandhaving variance#%$& . In
thecaseof a channelmodeledby a finite memorylinearfilter, the
receivedsignalcanbewrittenas' 
 ��� ��(*),+-
 ���/.10 
 ���2.43 
 ��� (1)

where5 (6�67 8�9 ��8;:���!�!�!<��8�=?>%:�@ ) arethecoefficientsof thechannelim-
pulseresponse,5 +-
 ��� �67 ��
 ��� ��!�!�!�����
 � �BA . � � @C) is formedby the last A
transmittedsymbols,
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5 0 
 �D� is an additive white Gaussiannoise(AWGN) with zero
meanandvariance# $E and

3 
 ��� is theimpulsive noise.
In thefollowing, theimpulsenoiseis modeledasin [7] by:3 
 �D� �GF�
 ���IH 
 �D�
where 
�F�
 �D�"� standsfor a Bernoulli process,a sequenceof ze-
roesand oneswith J,
KFL��� � � � , where � is the contamination
constant,and

H 
 ��� is a white Gaussiannoisewith zeromeanand
variance# $M suchas # $EON # $M !
Under this model, the probability density of the channelnoiseP 
 ��� � 0 
 ���2.43 
 ��� canbeexpressedasJ,
 P 
 �D��� �6
�� �-� �KQ 
SRT�"# $E �U. � Q 
SR���# $M . # $E � (2)

where
Q 
WVYXT��# $X � is theGaussiandensitywith meanV X andvari-

ance #%$X . 
 P 
 �D�"� is calleda ” Z � contaminated”noisesequence
[5][6]. The ” Z � contaminated”channelmodelis hereexpressed
via boththeobservationequation(1) andthefollowing stateequa-
tion, +[
 �D� �]\^+-
 � � � �%.�_ ��
 ��� (3)

where \ is the A � A shift matrix, and
_

is the A �[� vector,
givenby,

\`� abbbc RdRdR*!D!�!eR�fRdR*!D!�!eRR��fR*!D!�!eR!D!�!�!�!D!T!R�!D!T!gR��^R
h iiij _ � abbbc �R

...R
h iiij

Accordingto this formulation,theequalizationis equivalentto es-
timatingthestatevector +-
 ��� from theobservationof thechannel
output k	lm�67 ' 
 ��� � ' 
 � � � � ��!n!n!n� ' 
SR � @e! Wenotethattheestima-
tion of ��
 �D� canbeobtainedat somedelayedtime 
 � �[o � , whereR�p o p Aq� � . This problemhasbeenresolvedby theKalman
observer. However, thefiltering techniques,basedon anordinary
Kalmanfilter, completelylosetheir optimalpropertiesbecauseof
outliersin theobservationsto beprocessed[5]. Therefore,to cope
with thisproblem,many kindsof ”robustto impulsive noise”esti-
mationalgorithmshavewidely beenstudied,[5][6] andreferences
within. The typical methodfor the removal of impulsive noiseis
employing the Huber’s min-maxapproach.The performancesof
thesealgorithmsdependon thethresholdvaluewhich is generally
unknown.
In thenext section,weshow how wecanexploit theknowledgeof
impulsive noiseparametersin orderto have a robustequalization
method.

3. ROBUST RECURSIVE STATE ESTIMATION BASED
ON A NETWORK OF KALMAN FILTERS

Theideais tocomputethea posterioripdfof thestate,J%
S+-
 ����r k	l � ,
by approximatingit by a WeightedSumof Gaussian.The recur-
sion on J,
S+[
 �D��r k l � is explicitely given by the following Bayes
relationJ,
S+-
 ����r k l � �s8 l J,
S+-
 ����r k l >2: � J,
 ' 
 �D��r +-
 ����� (4)

with
:t�u �BJ,
 ' 
 �D��r k	l >%: � wherek	l >%: �67 ' 
 � � � � ��!n!v!n� ' 
SR � @

The likelihood of the observation J%
 ' 
 ����r +-
 ����� is easily deter-
minedif thenoisepdf is known.

Usingtheapproximationof thepredictedpdfbyaWSG,J,
S+-
 ����r k l >2: � ,
leadsto thefollowing expression[8],

J,
S+[
 �D��r k l >2: � �[w�x�y l�z{ �C| :~} x� 
 �D�KQ 
S+-
 ��� � + � 
 �Ur � � � � � � � 
 �2r � � � ���
(5)

with 
 + � 
 �Ur � � � �"� ��| :�� � � � � w x y l�z and 
�� � 
 �Ur � � � �"� �C| :�� � � � � w x y l�z are
vectorsandmatricesof dimension A �-� and A � A � respec-
tively, and,wherethematrices� � 
 �2r � � � � approachthezeroma-
trix.
Fromequation(2), thelikelihoodof theobservation J,
 ' 
 �D��r +[
 �D���
canbewrittenasa sumof two Gaussians,

J,
 ' 
 ����r +[
 �D����� 
�� �-� �KQ 
 ' 
 ��� � (*),+[
 �D� ��# $E ��. (6)� Q 
 ' 
 ��� ��� )%+[
 �D� ��# $M �
By replacing(6), (5) in (4) andby denoting� : ��� �1� , � $ � �
, # $: �]# $E , and # $$ �s# $M we get,

J,
S+-
 ����r k l � �]8 l w x y l<z{ ��| : ${� | : � � } x� 
 ����� � � (7)

where
� � � � Q 
S+-
 ��� � + � 
 �Ur � � � � � � � 
 �2r � � � ��� �Q 
 ' 
 ��� � ( ) +[
 �D� ��# $� � !

Basedon thedevelopmentdonein [2], by rewriting(*)2+-
 ��� ��(�),+ � 
 �Ur � � � �2. 
S+-
 ��� � + � 
 �Ur � � � ��� )�( (8)

andby defining

� � � � 
 �Ur �D� ���S� � 
 �Ur � � � � >%: . (�( )# $��� >%: (9)

we obtain,usingtheinversionmatrix lemmaon (9),� � � � 
 �2r ��� �]� � 
 �2r � � � � �B� � � � 
 ��� ( ) � � 
 �2r � � � � (10)� � � � 
 ��� �]� � 
 �2r � � � � (��C# $� . (*)%� � 
 �2r � � � � (m� >2: (11)

By introducing,+ � � � 
 �2r ��� �]+ � 
 �Ur � � � �2. � � � � 
 ����� ' 
 �D� � ( ) + � 
 �Ur � � � �I�
andby doingsomerearrangementsin equations,wecanshow thatJ,
S+[
 �D��r k l � canbewrittenasa WSG:

J%
S+-
 ����r k l � � $ w�x�y l�z | w<y l�z{� | y � � � z� | y :�� : z } � 
 �D�KQ 
S+[
 �D� � + � 
 �Ur �D� � � � 
 �Ur �����
(12)
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with+ � � � 
 �Ur �D� �]+ � 
 �Ur � � � ��. � � � � 
 ��� � ' 
 �D� � (*),+ � 
 �Ur � � � � �
(13)

} � | y � � � z 
 �D� � � � } x� 
 �D�I� � � � 
 ���� $ w x y l<z� | : � � } x� 
 �D�I� � � � 
 ���� � � � 
 �D� � Q 
 ' 
 ��� � (*)%+ � 
 �2r � � � � ��# $� . (�),� � 
 �Ur � � � � ( �� � � � 
 �D� �m� � 
 �Ur � � � � (��v# $� . (*),� � 
 �Ur � � � � (d� >%:� � � � 
 �Ur �D� �m� � 
 �Ur � � � � �f� � � � 
 ��� (*)%� � 
 �2r � � � �
(14)

We have thenestablishedtheway of computingthedensityfunc-
tion J%
S+-
 ����r k l � asa sum of Gaussiandensityfunctionswhen
thedensityfunction J,
S+-
 ����r k l >2: � is a sumof Gaussiandensity
functions.
Thepredictedpdf J,
S+[
 �d. � ��r k l � for thenext iterationis deter-
minedaccordingto thisBayesianrelation:J,
S+[
 �m. � ��r k l � ���~J,
S+[
 �D��r k l � J%
S+-
 �m. � ��r +[
 �D��� ��+[
 �D�
with J,
S+-
 ��. � ��r +-
 ����� �BJ,
 _ ��
 �d. � ���
Usingtheassumptionof i.i.d symbols,wecanwrite,J,
 _ ��
 �d. � ��� � ���  | : J   Q 
 _ ��
 �d. � � � _ �g ;�n¡   �
whereJ   � :� and ¡   � � 9�¢ = ( � 9 N � ).
By denoting+ � � � �   
 �d. � r �D� �]\f+ � � � 
 �Ur �D�2.G_ �   and� � � � �   
 �d. � r ��� �]\^� � � � 
 �Ur �D� \ ) . ¡   ,
we canshow that J,
S+-
 �d. � ��r k l � canbeobtainedas,

J,
S+[
 �m. � ��r k l � ��w x y l�£ : z{¤ | : } x¤ 
 �m. � � � (15)Q 
S+[
 �d. � � + � �  ;
 �d. � r �D� ��� � �  g
 �m. � r �D���
with V¥�6
S¦I��§ � �6
W���©¨;�"§ � �/ª «I
 �¬. � � �GªD
 ��� ���­� } x¤ 
 �¬. � � �J   } � 
 ���Finally, we canresumethealgorithmasfollows,
Prediction ª « 
 ��� �GªD
 � � � � �Y�

} x¤ 
 ��� �®J   } � 
 � � � � avec V¥�6
S¦I��§ � �6
W�"�S¨e�"§ �+ ¤ 
 �Ur � � � � �]\^+ � � � 
 � � � r � � � �2.`_ �  � ¤ 
 �2r � � � � �]�d\ � � � 
 � � � r � � � � \ ) . ¡  
Estimation ªU
 ��� ����ª x 
 ���+ � � � �   
 �2r ��� �m+ � � � �   
 �Ur � � � ��.� � � � �   
 �D�¯� ' 
 ��� � ( ) + � � � �   
 �Ur � � � �I�� � � � �   
 �Ur ��� �m� � � � �   
 �2r � � � � �f� � � � �   
 ��� ( ) � � � � �   
 �2r � � � �

� � � � �   
 �D� � °U±S² ³I² ´ y l�µ l >%: z�¶·;¸³ £U¶,¹ °2±W² ³º² ´ y l µ l >%: zK¶} � � � �   
 ��� � » ³�¼ x±W² ³º² ´ y l�zC½ ±S² ³º² ´ y l�z¸º¾"¿ u�ÀDÁIÂvÃÄ±W² ³º² ´ » ³�¼ x±W² ³º² ´ y l�zC½ ±S² ³I² ´ y l<z� � � � �   
 ��� � Q 
 ' 
 ��� � ( ) + � � � �   
 �Ur � � � � �# $� . ( ) � � � � �   
 �Ur � � � � � �
Then,theMMSE estimationof thestatevector, ÅÆ
S+[
 �D��r k l � , isÇ+ =*=�È�É 
 �2r ��� �dw<y l<z{±W² ³º² ´ } � � � �   
 ��� + � � � �   
 �Ur �D� (16)

We can seethat eachpredictedstate, + � � � �   
 �2r ��� , at the output
of the Kalmanfilter indexed by 
W���©¨;�"§ � is weightedby a coeffi-
cient } � � � �   that dependson the probability of appearanceof the
Gaussianandimpulsive noises( � �f� and � resp.)andtheerrorco-
varianceof eachKalmanfilter (

� � � � �   ). Whenanimpulseoccursin
thereceivedsample' 
 �D� , the

� � � :��   termstendto zero,otherwise,
the

� � � $ �   termstendto zero. So,thealgorithmextractstheinfor-
mationsymboleven whenthe impulsesarepresentwithout need
of any threshold.In thatway, the impulsesdo not affect thegood
behavior of thealgorithm.
Remark: If � ��R , we obtain the original NKF-basedequalizer
publishedin [2]
In a binarytransmission,theequalizeroutputwith adelay o ,Ê� =�=*È�É 
 � �4o � , is givenby thesignof the 
 o . � � th component
of theestimatedstate.Theequation(16)provesthattheestimated
state,in anMMSE sense,is a convex combinationof theoutputs
of ª�
 ��� parallelKalmanfilters. Thecovariancematrix of theesti-
mationerroris �­
 ��� � w<y l�z{±W² ³º² ´ } � � � �   
S� � � � �   
 �Ur �D��. (17)


W+ � � � �   
 �Ur �D� � +[
 �2r ����� 
S+ � � � �   
 �2r ��� � +-
 �Ur �D��� ) �
As establishedabove, the complexity of the algorithm,evaluated
by ª�
 �D� � grows exponentiallythroughiterations. To make it of
practicalusefor on-line processing,thesumgiving J,
S+[
 �D��r Ë l �
in (12) will be constrainedto containonly oneterm after the fil-
teringstep,let ªD
 ��� �Ì� . This is doneby setting + � 
 �Ur �D� to the
value of the estimatedstate

Ê+ =�=�È�É 
 ��� , � � 
 �2r ��� to �?
 �D� and} � � � �   
 ��� to � for thenext predictionstep.
Thisapproximationis rationalbecausethea posterioristatepdf is
assumedto belocalizedaroundtheMMSE estimationif theequal-
izer performscorrectly. It reducesthenumberof parallelKalman
filters from ª�
 ��� to ��� .

4. SIMULATION RESULTS

In this section,we give somesimulationresultsfor the proposed
algorithmbasedon a network of Kalmanfilters for a BPSKmod-
ulation alphabet( �Í�Î� ). In figure 1, we includea channel( ,
which is a realizationof thetypical channelModel A specifiedby
Hiperlan2standard.Thedelayestimationo is fixedto 8 symbols.
We plot the BER obtainedfrom threemethods. In the first, we
choose� ��R , so, we have the influenceof the Gaussiannoise
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only. In the secondandthird curves, the contaminationparame-
ter or theprobabilityof impulsive noiseis chosen� �ÐÏÑ����R >ÓÒ
with

· ¸Ô· ¸Õ �6Ö�R;R . We employ our algorithmdescribedin section3
andtheclassicalNKF [2] with a fixedthreshold,asis donein [6],
in orderto preventthedivergenceof thealgorithmwhenimpulses
occur.
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B
E

R

After equalization and cancellation of impulsive noise 
with a fixed threshold                                 
Without impulsive noise
After equalization and cancellation of impulsive noise
by a Network of Kalman Filters                        

Fig. 1. BERperformancewhenwe considera channel(
We cannotice,thegoodbehavior of our methodunderthesecir-
cumstances,sincethecurve afterequalizationandcancellationof
impulsive noise is only marginally different from the curve ob-
tainedwith Gaussiannoiseonly. We canalsoremarkthat thero-
bustNKF outperformstheNKF+thresholdmethod.It is clear, that
its performancedependon thevalueof this threshold.

In figure 2, we show the efficiency of impulsenoisecancella-
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Fig. 2. Efficiency of impulsive noisecancellationin theproposed
structure

tion in the proposedstructure. We employ a channel (×�Ø�

in orderto cancelthe effect of the channelandhighlight the im-
pactof impulsive noiseonobservations.We plot ÅfÙ<Ú A�Û ÅÜ
W��Ý �
versus Û�Þàß �áÅfÙ�Ú�# $E 
W��Ý �

where Å~Ù is the symbol energy.
TheMSEis computedbetweentheestimatedsymbols,

Ê� , obtained
from the observationscorruptedby both Gaussianandimpulsive
noises( �1â�ãR ), and the received signal in the caseof Gaussian
noiseonly, � .13

. So, A�Û Å canbewritten as A�Û ÅÜ��Å*
 rnr � .3 � Ê� rvr $ � . Therefore,if thealgorithmcancelstheeffect of theim-
pulsive noise,we will have a reliableestimationof the transitted
data(i.e.

Ê����� ). So,thevalueof theMSE will tendto theGaus-
siannoisevariance#,$E . From figure 2, we noticethat the robust
NKF equalizeris not vulnerableto the impulsive noiseandcan-
celsits effect sinceits curve closelyfollows thecurve containing
theGaussiannoiseonly.

5. CONCLUSION

In this paper, we have describeda new equalizerbasedon a NKF
givenustheoptimalMMSE estimationof thestatevectorformed
by the last A transmittedsymbols. It is basedon a state-space
descriptionof the communicationsystem,the approximationof
the densityfunctionsof the datasignalsby a WSG densityfunc-
tionsandtheknowledgeof thepdf of themeasurmentnoisewhich
canbewritten astwo Gaussiantermsweigthedby theprobability
of appearanceof Gaussianandimpulsive noises.In thisapproach,
neitherclippingnorimpulsescorrectionmechanismareemployed.
Simulationresultsshow thattheproposedalgorithmis lessvulner-
able to the impulsive noiseandpresentsa betterbehavior com-
paredto theNKF+thresholdscheme.Many extensionsareunder
consideration,in orderto increasethepracticalusefulnessof this
approach.
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