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ABSTRACT

In thispaperweproposeanonparametricindependentcom-
ponentanalysis(ICA) algorithm for the caseof instanta-
neousandlinear mixtures. Our algorithmcombinesmini-
mizationof correlationamongnonlinearexpansionsof the
outputsignalswith goodinitialization derivedfrom search
guidedby statisticaltestsfor independence.Simulationre-
sultsobtainedfrom both syntheticandreal-life datashow
thatourmethodprovidesconsistentresultandcomparesfa-
vorablyto theexisting ICA algorithms.

1. INTRODUCTION

Theproblemof blind sourceseparation(BSS)ariseswhen
onedesiresto extract certainsignalsbasedsolely on their
mixture(s).Wepresentanew nonparametricBSSalgorithm
enablingreliablerecovery of the original signalsby itera-
tively minimizing the correlationamongnonlinearexpan-
sions(NLExp) of theoutputsignals.A key to oursuccessis
finding a suitableinitial startingpoint by implementingan
efficient statisticalindependencetest. Our studyis focused
on theproblemof sourceseparationfor instantaneousand
time-invariant linear mixtures.Let usfirst define

�
asthe

numberof sources,� thenumberof sensors(i.e. received
signals)and � thenumberof samples.Onemayexpressthe
mixing processas �����	��


(1)

whereS is an
�
� � matrix representingsamplesof

�
independentsources,X is an � � � matrix of observed
mixturesand

�
is an � ���

realconstantmatrixwith rank�
( ��� � ), usuallycalledthemixingmatrix. Withoutloss

of generality, we assumethat the sourcesare zero-mean.
The demixingprocessrecoversthe

�
independentsource

signalsin



as � by multiplying a demixingmatrix � by
theobservedmixtures

�
:

� � � ��� � ��
�����
 (2)

Thesourceseparationis successfulif thematrix
�

rescales
and/orpermutestherowsof



. Weassumeabsenceof noise

and presentthe caseof equalnumberof sourcesand re-
ceivedsignals(N=M) that is known at theprocessingunit.
BSS problemcan be translatedinto IndependentCompo-
nentAnalysis(ICA) for theultimategoalconsistsof recov-
eringstatisticallyindependentoutputs.

2. NLEXP-ICA ALGORITHM

It is well known from probabilitytheorythattwo scalarran-
dom variables

���
,
���

arestatisticallyindependentif and
only if ��� ����� and !� �"�#� remainuncorrelatedfor all � and 
rangingover a separatingclassof functions[7]. Hence,we
maydefinea measureof dependencebasedon theresidual
correlationamong ��� � � � and  $� � � � with adequateselec-
tion of thefunctions � ,  . Givena demixingmatrix � and
thecorrespondingoutputsignals� , ournew algorithmfirst
expands� to % �'& % �(&#)#)�) %+* where %-, � �.,/�0� � suchthat� � �1� �2� � and �3, beingsomenonlinearfunctionsapplied
elementwiseto � for 45�76 . This resultsin the following�98:� � compoundmatrix

;<� =>
? % �

...%-*
@#A
B � =>

? � � �1� �
...�.*C�0� �

@#A
B (3)

Its covariancematrix is givenin block form by

�EDF� =>
?
�HG'I �J% �.& % �#� )�)#) �HG'I �J% �3& %+* �

...
...�HG'I �K% * & % � �L)�)#)M�HG'I �J% * & % * �

@ A
B (4)

In orderto takeinto accountthecross-covariancesonly with
respectto pairsof distinctvariablesNO�QP(, & P.R �5S 4UT�WVYX , we
first form thematrix Z definedas

Z � �\[ � D (5)

Theoperator[ denoteselementwisematrix multiplication
and � �7]�^`_

, where1 is an
�98a�9�98

matrix with all
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entriesequalto oneandI is an
�98`���98

matrixcomprised
of
8 � �b�c�

identitymatrices:

� �W]5^ =>
?
d�e )#)#)�d�e
...

...d�e )#)#)�d�e
@ A
B (6)

We selectasour objective functionthesumof squaredco-
variancesof all pairsof variables�0�gfh�1P(, ��& �3i3�QP'R �j� for 4�T�kV
andexpressit asl

�nm6 �#oqp.rOs�t �1Z � Z �u&
(7)

It canbeshown that thegradientof

l
with respectto � is

givenby

v"w
l
�xm�

e *y
,Qz Rj{ � Z ,|R ��} ,|R ����~�& (8)

where} ,|R �	� f3� %��14 &#��� [�%5� V�&�� ���<� i %5�Q4 &#��� [ � %�� V(&�� � (9)

� % �
=>
? � �

...� *
@ A
B � =>

? �$�� �1� �
...�$�* �1� �

@ A
B (10)

and
� , is the 4K�1� columnof identity matrix

d�e
. Thus the

demixingmatrix � maybeestimatediterativelyusingstan-
dardgradient-basedlearningrules(e.g. steepestdescent):����0� � m �+� ����0� ��^�� �0� �-��v w

l
�J� � (11)

3. TESTS FOR STATISTICAL INDEPENDENCE

3.1. Power-divergence family test statistics

In discretemultivariateanalysis,it is known thata hypoth-
esisregardingthe statisticalpropertiesamong

�
discrete

variablesP � )#)�) P e canbetestedbyevaluatingthechi-square
goodness-of-fitstatisticson thecorrespondingcontingency
table. Assumethat the 4 �1� variable P(, hasbeenquantized
into � intervalsor cells N���� ,��R SgV"� m )�)#) � X for 4 � m )#)�)/� .
We definethecell countingvariables�C�C�	� ��N V.�'&KV��+)#)#)KVge�X.� (12)

as the numberof datapointswherewe have concurrentlyP ��� � � � �R/� &#)�)#)!& P e�� � � e �Rq� , with theargument� takingval-
uesin � � N m )�)#) � X e . ReadandCressie[8] introducedthe
power-divergence(PD) family of goodness-of-fitstatistics

to measurethe deviation of observed datafrom the stipu-
latedhypothesis:

6 d � �1¡ S�¢`�+� 6£ � £ � m � y�j¤�¥ �2���(¦ �
� �§ � �j��^ m�¨ (13)

where § � is theexpectednumberof databelongingto the
cell � underthehypothesisand

�2�
is thenumberof dataac-

tually observed. Whenthe expectedcell counts N § ��X are
unknown they arereplacedby their estimatesN �§ ��X based
on the observed data. Under the assumptionsof indepen-
denceamongthedatapointsandfixedcell probabilitiesfor
all � , all thePD family statisticsareasymptoticallyequiv-
alentwhenthehypothesisis true. Thecommonasymptotic
distribution is © � with a numberof degreesof freedomde-
pendingon the total numberof cells and the numberof
estimatedparameters.Numerousresearcherssuggestthat
choosing

£
between0 and1 (e.g.

£ � �ª
) hasthebestde-

tectionpoweragainstarbitrarylack of fit to thehypothesis.

3.2. Adaptation to ICA problems

Theteststatisticsdescribedabovemaybeusedto determine
whethera given demixingmatrix recoversstatisticallyin-
dependentsignalsevenwhentheindividual signalsamplesN'« , � o/�¬X arenot i.i.d. If thesignalsN'« , � o/�¬X arestationaryand
mutually independentof eachother, the marginal sumsof
cell countingvariablesN � ,®­ &j� ­¯R X determinetheunbiased
estimatesof expectedcell counts

¢
. For

��� 6 , wehave�§ ,�R � � ,�­ �#� ­¯R� & �Q4 &JVO� � N m & 6 )�)#) � X � (14)

with
� ,®­ �±° iRj{ � � ,|R and

� ­¯R �a° i,®{ � � ,�R . Whenthe
individual signal samplesare i.i.d, N � � � �¬X aredistributed
accordingto amultinomialdistributionandtheestimatesin
(14)becomethemaximumlikelihoodestimatesof

¢
.

Extensionof equation(14) to higherdimensionalcases
is straightforward.Moreover, it is advisedbymany todefine
equiprobablecells to guaranteethe unbiasnessof PD test
statistics[8]. In this case,the estimatesof expectedcell
countsareequalto the ratio betweensamplesizeandthe
total numberof cells:�§ �C� �� e ² � � � (15)

Theindependencetestcanbeeasilyperformedby substitut-
ing thevalueof ³¢ from (15)into (13). Theexactnumberof
degreesof freedomof theapproximatingchi-squaredistri-
butionis equalto �0� e ^ � �´����^ m � by takinginto account
all theconstraintson themarginalsums.

3.3. Improving robustness of NLExp-ICA

Preliminarysimulation resultsshow that our NLExp-ICA
algorithmsometimesencountersconvergencedifficulty or
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spurioussolutionswhenthe initial guessis far away from
the true demixingsolution. To improve its robustness,we
proposea two-phaseICA algorithm.Thefirst phaseusesa
power divergencestatistics-basedindependencetestto ob-
taina suitableinitializationof demixingmatrix �9µ , where-
uponNLExp-ICArefinesthe solution to reacha demixing
matrix with high separationperformance.Searchfor ��µ
maybecarriedout usinganorthogonalICA algorithm[3]
which is basedon the eigen-decompositionof the covari-
ancematrixof theobservedmixtures:¶¸·���¹ N�º!º¼» X½���½¶¸¾u� ~ ��¹ � ¹ ~ (16)

where
¶ ¾

is diagonalunderhypothesisof statisticalinde-
pendenceamongthe sources,

¹
is an orthogonalmatrix

containingthe eigen-vectorsof
¶�¿

, and � is a diagonal
matrix with all positive entrieson the diagonalsince

�
is

assumedinvertible. Comparingthe last two termswe con-

cludethat themixing matrix canbewritten as
¹ � �ÀhÁ ¶ÃÂ �À¾

where Á is any orthogonalmatrix. In virtue of the scal-
ing ambiguity in blind identification[3], onecanestimate
the demixingmatrix � by Á ~ � Â �À ¹ ~ so that � � � �
recovers



to within a rescalingof rows by

¶ÃÂ �À¾
and a

permutationandsign changedeterminedby the choiceofÁ . Hence,the problemis reducedto finding an orthogo-
nal transformationÁ suchthattheresultingoutput � yields
low PD teststatistics.Thecorrespondingdemixingmatrix
is usedto initialize theNLExp-ICAalgorithm.

4. EXPERIMENTAL RESULTS

4.1. Performance evaluation of ICA algorithms

We introducea new index measuringthequality of source
separationbasedon thesignal-to-interferenceenergy ratio
(SIR)definedasfollows.Let

�
betheglobaltransfermatrix

betweenoriginal and estimatedsourcesas definedin (2),¹ « �, betheenergyof 4 �1� originalsourceand
¹ ,1z R theenergy

of 4 �1� sourcerecoveredon
V �1� channel.Thequantity

Ä RÅz , � ¹ ,1z R°ÇÆ�¹ Æ z R �
� �Rj, ¹ « �,°�Æ-� �R Æ3¹ « � Æ (17)

representstheratiobetweentheenergy of 4 �1� sourcerecov-
eredonchannel

V
andthetotalenergy recoveredonchannelV

. Now let
-d ¶ ,j�1È É ��� m�Ê+Ë�Ì�Í � µ Ä ,m ^ Ä , & Ä , �´Î"Ï.ÐR Ä Rjz , (18)

then

-d ¶ , is the ultimatequality of recovery with respect

to the 4 �1� source. If

+d�¶ ,�Ñ Ê , the 4 �1� signal is domi-

nantat someoutputchannelof thedemixer. Conversely, if
-d ¶ ,5Ò Ê , the 4 �1� signaldoesnot dominateat any of the
outputchannels.Suchcasehappenswhenthe recovery is

incomplete. We will conservatively usethe minimum SIR
over all the channels(MSIR) asthe global separationper-
formanceindex. This definition is consistentwith another
standardperformanceindex called Amari error [4] since
MSIR increaseswhenthe matrix

�
tendstoward an ideal

demixingmatrix (i.e. productof scalingandpermutation
matrices).However, unlike Amari error, theindex MSIR is
capableof detectingincompleterecovery.

4.2. Simulation setup

We illustratetheperformanceof ournew algorithmon four
different datasets. Data set 1 is generatedsynthetically,
consistingof one i.i.d. Rayleigh(1)distributedrandomse-
quenceand one i.i.d. Laplacian(1)distributed sequence.
The threeotherdatasetsare taken from ICALAB bench-
marksets[6]: Speech4 (sources1,2),Sergio7 (sources3,6)
andGnband(sources1,4).Giventhelargesizeof dataset3
( � = mgÊ3Ó ), weselectthefirst 2000samplesfrom eachsource
asthe original signals. NLExp-ICA usesthe original data
plus the threefollowing nonlinearexpansionsto form the
compounddata % :

� � �1Ô ��� mm �`t Â¯Õ & �
ª �QÔ �Ö��× Ì�ØÚÙ Ô & � Ó �QÔ ��� Ø/Û®Ü 6.Ô (19)

Theperformanceof NLExp-ICA is comparedto threeother
standardICA algorithms: InfoMax, Fast-ICA (pow3) and
JADE [1, 2, 5]. All theexperimentsconductedon thedata
setsarerepeatedover200randomlyselectedmixing matri-
ces

�
andtheaverageMSIR (dB) arereported.

4.3. Separation Performance

In Figure 1 we first illustrate the behavior of the PD test
statisticsin termsof thequalityof demixingmatrix � (mea-
suredby MSIR) for asimpletwo sourcesBSSproblem.The
orthogonalmatrix Á hasoneparameter( Ý ). We seeread-
ily that as the degreeof separationimproves, the PD test
statisticdecreasesandstaysbelow significancelevel when
theseparationis maximal.Figure2 shows theperformance
realizedby eachof the four ICA algorithmson dataset1.
Our algorithmclearlydemonstratesbetterperformance.In
addition,we notedthat InfoMax andFast-ICA algorithms
yieldedunsatisfactoryresultsfor several randomlychosen
mixing matricesastheresultingMSIR wasbelow Þ dB.

Theresultsfor datasets2,3,4aregivenin Table1. We
notein particulartheperformancerealizedby NLExp-ICA
ondataset4,whichcontainstwo fourthordercoloredsources
with a distribution closeto Gaussianandis known to be a
“hard” BSSbenchmark.NLExp-ICA achievesmuchbetter
separationthanFast-ICAandJADE. Overall,ouralgorithm
succeedsin finding consistentdemixingsolutionwith su-
perior performancecomparedto the threeotherICA algo-
rithms.
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Fig. 1. Behavior of PDteststatisticvs. qualityof demixing
matrix � . PD statisticis below significancelevel at maxi-
maldegreeof separation(highestMSIR).
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Fig. 2. BSSperformanceresultsfor dataset1. Plotof aver-
ageMSIR versussamplesize � over200randomlyselected
mixing matrices

�
.

5. CONCLUSION

Wehaveproposedapowerfulnonparametrictwo-phaseICA
algorithm. It first deploys a statisticalindependencetestto
find an initial estimateof demixingmatrix achieving suffi-
cientdegreeof independenceamongtherecoveredsignals.
Subsequently, it refinesthesolutionby minimizing thecor-
relationamongdifferentnonlinearexpansionsof all recov-
eredsignals. Experimentalresultsshow that our method
providesconsistentresultsfor a varietyof sourcedistribu-
tions andcanoutperformthe existing state-of-the-artICA
algorithmsin somedifficult problems. Furthermore,the
proposedindependencetestmaybe regardedasa fastand
efficient tool to evaluatethequalityof solutionprovidedby
any ICA algorithmwithout knowing the sources.Our fu-
ture investigationwill be focusedon the generalizationof
NLExp-ICA algorithmto highdimensionalproblemswhere
time-efficientsearchof goodinitialization is needed.

Table 1. BSSperformanceresultsfor datasets2,3,4.Aver-
ageMSIR (dB) versussamplesize � .

L InfoMax FastICA JADE NLExp
500 20.66 31.26 31.37 34.85
1000 30.29 32.53 35.08 36.52

Data2 2000 19.44 24.09 21.19 28.49
3000 29.38 32.44 26.23 38.81
4000 31.46 34.01 30.58 33.38
5000 30.97 31.92 31.58 33.47
250 19.47 20.95 18.98 30.08
500 28.11 36.49 39.04 44.83

Data3 1000 33.26 36.28 40.36 50.15
1500 34.54 29.71 31.65 39.22
2000 35.05 31.88 35.22 38.51

Data4 2000 13.12 5.32 5.43 18.56
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