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ABSTRACT

In this papemwe proposeanonparametrimdependentom-
ponentanalysis(ICA) algorithm for the caseof instanta-
neousand linear mixtures. Our algorithm combinesmini-

mizationof correlationamongnonlinearexpansionof the
outputsignalswith goodinitialization derived from search
guidedby statisticaltestsfor independenceSimulationre-

sults obtainedfrom both syntheticandreal-life datashaw

thatour methodprovidesconsistentesultandcomparega-

vorablyto theexisting ICA algorithms.

1. INTRODUCTION

The problemof blind sourceseparatioBSS)ariseswhen
onedesiresto extract certainsignalsbasedsolely on their
mixture(s).We presentanewn nonparametri@SSalgorithm
enablingreliable recovery of the original signalsby itera-
tively minimizing the correlationamongnonlinearexpan-
sions(NLExp) of theoutputsignals.A key to our successs
finding a suitableinitial startingpoint by implementingan
efficient statisticalindependenceest. Our studyis focused
on the problemof sourceseparatiorfor instantaneousind
time-invariant linear mixtures. Let usfirst define N asthe
numberof sourcesM the numberof sensorgi.e. receved
signals)and L thenumberof samplesOnemayexpresshe
mixing procesas

X=A-8 1)

whereS is an N x L matrix representingsamplesof N
independensources X is an M x L matrix of obsered
mixturesand A isan M x N realconstantnatrix with rank
N (M > N), usuallycalledthemixingmatrix. Withoutloss

of generality we assumethat the sourcesare zero-mean.

The demixing processecoversthe N independensource
signalsin S asY by multiplying a demixingmatrix W by
theobsenedmixturesX:

Y =WX =WAS =CS @)
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Thesourceseparatioris successfuif thematrix C rescales
and/orpermutegherowsof S. We assumeabsencef noise
and presentthe caseof equalnumberof sourcesand re-
ceivedsignals(N=M) thatis known at the processingunit.
BSS problemcan be translatedinto IndependentCompo-
nentAnalysis(ICA) for the ultimategoal consistof recov-
eringstatisticallyindependentutputs.

2. NLEXP-ICA ALGORITHM

It is well known from probabilitytheorythattwo scalaran-
dom variablesX;, X, arestatisticallyindependentf and
onlyif f(X;) andg(X>) remainuncorrelatedor all f andg
rangingover a separatinglassof functions[7]. Hence we
may definea measuref dependencbasedon the residual
correlationamongf(X;) andg(X5>) with adequateselec-
tion of thefunctionsf, g. Givenademixingmatrix W and
thecorrespondingutputsignalsY’, our new algorithmfirst
expandsY to 7, Z,,... Zr whereZ; = f;(Y) suchthat
1Y) =Y andf; beingsomenonlinearfunctionsapplied
elementwisdo Y for ¢ > 2. Thisresultsin the following
NF x L compoundnatrix

Zy f(Y)
Z= : = : 3)

ZF fr(Y)
Its covariancematrixis givenin block form by

CO’U(Zl,Zl) CO’U(Zl,ZF)

Cz = (4)

COU(ZF,Zl) COU(ZF,ZF)

In orderto take into accounthecross-c@ariance®nly with
respecto pairsof distinctvariables{(y;,y;) : i # j}, we
first form the matrix M definedas

M=MgRC(Cyg )

The operator® denoteslementwisematrix multiplication
andM =1 -1, wherelisan NF x NF matrix with all
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entriesequalto oneandl isan N F' x N F' matrixcomprised
of F?2 N x N identity matrices:

Iy ... Iy
M=1-| ; 5 (6)
In ... In

We selectasour objective functionthe sumof squarecto-
variancef all pairsof variables(f,(y;), f,(y;)) fori # j
andexpresst as

L= % -trace(M - M), (7)
It canbe shovn thatthe gradientof £ with respecto W is
givenby
1 NF
Vwl=2 > Mi-Kij- X7, (8)
i,j=1
where
D, [)

Dz = : = :
Dp fr(Y)

(10)

ande; is the it" columnof identity matrix Iy. Thusthe
demixingmatrix W maybeestimatedteratively usingstan-
dardgradient-basettarningrules(e.g. steepestlescent):

Wk +1) = W(k) —n(k) - Vi L(k) (11)

3. TESTSFOR STATISTICAL INDEPENDENCE

3.1. Power-divergencefamily test statistics

In discretemultivariateanalysis,it is known thata hypoth-
esisregardingthe statisticalpropertiesamongN discrete
variablegy; ...y canbetestedoy evaluatingthechi-square
goodness-of-fistatisticson the correspondingontingeny
table. Assumethatthe it variabley; hasbeenquantized
into ¢ intervalsor ceIIs{JJ(’) :j=1...¢q}fori=1...N.
We definethe cell countingvariables

Nj = N({j1,j2---in})

asthe numberof datapointswherewe have concurrently
Y1 € J}ll), .-, YN € J](fvv), with theargumentj takingval-
uesin J = {1...¢}". ReadandCressig8] introducedhe

powerdivergence(PD) family of goodness-of-fistatistics

(12)

to measurehe deviation of obsered datafrom the stipu-
latedhypothesis:

2 N;
2I'X :m) = mJEZJNJ : [(Ej))\ -1 (13

wherem; is the expectednumberof databelongingto the
cell j underthe hypothesisind V; is the numberof dataac-
tually obsened. Whenthe expectedcell counts{m;} are
unknown they arereplacedby their estimates{ri;} based
on the obsened data. Underthe assumption®f indepen-
denceamongthe datapointsandfixedcell probabilitiesfor
all L, all the PD family statisticsare asymptoticallyequiv-
alentwhenthe hypothesiss true. The commonasymptotic
distribution is 2 with a numberof degreesof freedomde-
pendingon the total numberof cells and the number of
estimatedparameters.Numerousresearchersuggesthat
choosingA betweer0 andl1 (eg. A = %) hasthe bestde-
tectionpoweragainstarbitrarylack of fit to the hypothesis.

3.2. Adaptation to ICA problems

Theteststatisticadescribecbose maybeusedto determine
whethera given demixing matrix recovers statisticallyin-
dependensignalsevenwhenthe individual signalsamples
{si(t)} arenoti.i.d. If thesignals{s;(t)} arestationaryand
mutually independenbf eachother, the mamginal sumsof
cell countingvariables{ N;, N, ; } determingheunbiased
estimate®f expectedcell countsm. For N = 2, we have
Moo Wi (i j) € (1,2, .q)

with Ni+ = E?:l NZ] andN+j = Z;’lzl Nz] Whenthe
individual signal samplesarei.i.d, {N(j)} aredistributed
accordingo amultinomialdistribution andthe estimatesn
(14) becomehe maximumlik elihoodestimate®f m.

Extensionof equation(14) to higherdimensionakcases
is straightforvard. Moreover, it is advisedoy mary to define
equipiobablecells to guaranteghe unbiasnessf PD test
statistics[8]. In this case,the estimatesof expectedcell
countsare equalto the ratio betweensamplesize andthe
total numberof cells:

mij = (14)

iy = Vi€ (15)
Theindependenctestcanbeeasilyperformedoy substitut-
ing thevalueof m from (15)into (13). Theexactnumberof
degreesof freedomof the approximatingchi-squaredistri-
butionis equalto (¢"¥ —gN + N — 1) by takinginto account
all the constrainton the marginal sums.

3.3. Improving robustness of NL Exp-ICA

Preliminary simulationresultsshav that our NLExp-ICA
algorithm sometimesncountersornvergencedifficulty or




spurioussolutionswhenthe initial guessis far away from

the true demixingsolution. To improve its robustnesswe
proposea two-phasdCA algorithm. Thefirst phaseusesa
power divergencestatistics-basethdependencéestto ob-
tain a suitableinitialization of demixingmatrix Wy, where-
uponNLExp-ICArefinesthe solutionto reacha demixing
matrix with high separatiorperformance. Searchfor W,

may be carriedout usingan orthogonall CA algorithm[3]

which is basedon the eigen-decompositioonf the covari-
ancematrix of theobsenedmixtures:

Ry = E{xx"} = AR,A" = ELE" (16)

where Ry is diagonalunderhypothesisof statisticalinde-
pendenceamongthe sources,FE is an orthogonalmatrix
containingthe eigen-\ectorsof Rx, and L is a diagonal
matrix with all positive entrieson the diagonalsince A is
assumednvertible. Comparingthe lasttwo termswe con-

cludethatthe mixing matrix canbewritten as EL3 U R; *
whereU is ary orthogonalmatrix. In virtue of the scal-
ing ambiguityin blind identification[3], one canestimate
the demixingmatrix W by UTL—2 ET sothatY = WX

recosers S to within a rescalingof rows by R;% and a
permutationand signh changedeterminedby the choiceof
U. Hence,the problemis reducecto finding an orthogo-
naltransformatiorU suchthattheresultingoutputY” yields
low PD teststatistics. The correspondinglemixing matrix
is usedto initialize the NLExp-ICAalgorithm.

4. EXPERIMENTAL RESULTS

4.1. Performanceevaluation of | CA algorithms

We introducea new index measuringhe quality of source
separatiorbasedon the signal-to-interfeenceenegy ratio

(SIR)definedasfollows. Let C' betheglobaltransfemmatrix
betweenoriginal and estimatedsourcesas definedin (2),

Es? betheenepy of i original sourceandE; ; theenegy

of it* sourcerecoveredon j** channel Thequantity

i = E;; ngiES%

,'l - - y

! 2k Eri 2 C‘]Z'kESi
representgheratio betweertheenegy of it* sourcerecor-

eredonchannelj andthetotal enegy recoreredon channel
7. Now let

17)

K3

then SIR; is the ultimate quality of recovery with respect
to the i** source. If SIR; > 0, the i** signalis domi-
nantat someoutputchannelof the demixer. Corversely if
SIR; < 0, theit" signaldoesnot dominateat ary of the
outputchannels.Suchcasehappensvhenthe recovery is

incomplete We will conseratively usethe minimum SIR

over all the channel{MSIR) asthe global separatiorper

formanceindex. This definitionis consistentvith another
standardperformanceindex called Amari error [4] since
MSIR increasesvhenthe matrix C' tendstoward an ideal

demixing matrix (i.e. productof scalingand permutation
matrices).However, unlike Amari error, theindex MSIR is

capableof detectingncompleterecovery.

4.2. Simulation setup

We illustratethe performancesf our new algorithmon four
differentdatasets. Dataset 1 is generatedsynthetically
consistingof onei.i.d. Rayleigh(1)distributedrandomse-
guenceand onei.i.d. Laplacian(1)distributed sequence.
The threeother datasetsare taken from ICALAB bench-
mark sets[6]: Speeh4 (sourcesl,2), Segio7 (sources3,6)
andGnband(sourcedl 4). Giventhelargesizeof dataset3
(L=10%), we selectthe first 2000samplesrom eachsource
asthe original signals. NLExp-ICA usesthe original data
plus the threefollowing nonlinearexpansiongo form the
compounddataZ:

1

fa(z) = Py f3(x) = cos 3z, fa(x) =sin2z (19)
Theperformancef NLExp-ICA is comparedo threeother
standardCA algorithms: InfoMax, Fast-ICA (pow3) and
JADE [1, 2, 5]. All theexperimentsconductedn the data
setsarerepeatedver 200randomlyselectednixing matri-

cesA andtheaverageMSIR (dB) arereported.

4.3. Separation Performance

In Figure 1 we first illustrate the behaior of the PD test
statisticdn termsof thequality of demixingmatrix W (mea-
suredby MSIR) for asimpletwo source8SSproblem.The
orthogonalmatrix U hasone paramete(d). We seeread-
ily thatasthe degreeof separatiorimproves,the PD test
statisticdecreaseandstaysbelow significancdevel when
the separatioris maximal. Figure2 shavs the performance
realizedby eachof the four ICA algorithmson dataset1.
Our algorithmclearly demonstratebetterperformanceln
addition, we notedthat InfoMax and Fast-ICA algorithms
yielded unsatisfctoryresultsfor several randomlychosen
mixing matricesastheresultingMSIR wasbelow 5dB.

Theresultsfor datasets2,3,4aregivenin Tablel. We
notein particularthe performanceealizedby NLExp-ICA
ondataset4, whichcontaingwo fourthordercoloredsources
with a distribution closeto Gaussiarandis known to be a
“hard” BSSbenchmark NLExp-ICA achiezesmuchbetter
separatiothanFast-ICAandJADE. Overall, our algorithm
succeedsn finding consistentdemixing solutionwith su-
perior performanceeomparedo the threeotherICA algo-
rithms.
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Fig. 1. Behavior of PDteststatisticvs. quality of demixing
matrix W. PD statisticis below significancdevel at maxi-
mal degreeof separatiorthighestMSIR).
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Fig. 2. BSSperformanceesultsfor datasetl. Plotof aver-
ageMSIR versussamplesize L over 200randomlyselected
mixing matricesA.

5. CONCLUSION

Wehave propose@powerfulnonparametribvo-phaséCA

algorithm. It first deploys a statisticalindependenceestto

find aninitial estimateof demixingmatrix achieving suffi-

cientdegreeof independencamongtherecoreredsignals.
Subsequentlyit refinesthe solutionby minimizing the cor-

relationamongdifferentnonlinearexpansionsf all recov-

eredsignals. Experimentalresultsshav that our method
providesconsistentresultsfor a variety of sourcedistribu-

tions and can outperformthe existing state-of-the-artCA

algorithmsin somedifficult problems. Furthermore the
proposedndependencéestmay be regardedasa fastand
efficienttool to evaluatethe quality of solutionprovidedby
ary ICA algorithmwithout knowing the sources.Our fu-

ture investigationwill be focusedon the generalizatiorof

NLExp-ICA algorithmto highdimensionaproblemswvhere
time-eficientsearclof goodinitialization is needed.

Table 1. BSSperformanceesultsfor datasets2,3,4.Aver
ageMSIR (dB) versussamplesize L.

L InfoMax FastiICA JADE NLExp

500 20.66 31.26 31.37 3485

1000| 30.29 3253 35.08 36.52

Data2 | 2000 | 19.44 24.09 21.19 2849
3000 | 29.38 3244 26.23 3881

4000 | 31.46 3401 30.58 33.38

5000 | 30.97 31.92 31.58 3347

250 19.47 2095 18.98 30.08

500 28.11 36.49 39.04 4483

Data3 | 1000| 33.26 36.28 40.36 50.15
1500 | 34.54 29.71 31.65 39.22

2000 | 35.05 31.88 35.22 3851

| Data4 [ 2000] 13.12 5.32 543 1856 |

6. REFERENCES

[1] Jean-Francoi€ardoso,"Blind separatiorof instanta-
neousmixturesof nonstationargources, IEEE Trans-
actionson SignalProcessingvol. 49,n0.9, September
2001.

[2] Aapo Hyvdrinen, “Fast and robust fixed-point algo-
rithms for independenttomponentanalysis, |EEE
Transactionson Neumal Networks vol. 10, no. 3, pp.
626-634,1999.

[3] Jean-Francoi€ardoso,Blind signalseparation:Sta-
tistical Principles;, Proceedingof the IEEE, vol. 86,
no. 10, October1998.

[4] S.Amari, A. CichockiandH. H. Yang,“A new learn-
ing algorithmfor blind signalseparatiori, Advancesn
Neumal Information ProcessingSystems, MIT Press,
1996.

[5] A. Bell, T. Sejnavski, “An information-maximization
approacho blind separatiorandblind decowolution;
Neumal Computation vol. 7, no. 6, pp. 1004-1034,
1995.

[6] A. Cichocki, S. Amari, K. Siwek et al,
“ICALAB for Signal Processing- benchmarks”,
http://lwwwbsp.bain.riken.go.jp/ICALAB

[7]1 A. Feueremer, “A consistentestfor bivariatedepen-
dencé€, InternationalStatisticalReview, vol. 61, no. 3,
pp.419-433,1993.

[8] Timothy R. C. Read and Noel A. C. Cressie,
Goodness-of-fitatisticsfor discretemultivariateanal-
ysis,SpringerVerlag,1988




