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ABSTRACT

Presented rel ative Newton method for quasi-maximum like-
lihood blind source separation significantly outperforms
natural gradient descent in batch mode. The structure of the
corresponding Hessian matrix allowsits fast inversion with-
out assembling. Experiments with sparsely representable
signals and images demonstrate super-efficient separation.

1. INTRODUCTION

Several Newton-like methods have been already proposed
for blind source separation, see [1] for more details. Here
we present aNewton method for quasi-maximum likelihood
source separation [2, 3] in batch mode, without orthogo-
nality constraint. This criterion provides improved separa-
tion quality and is particularly useful in separation of sparse
SOurces.

Consider the blind source separation problem, where an
N-channel sensor signal z(¢) arisesfrom N unknown scalar
sourcesignalss;(t), i = 1,.., N, linearly mixed together by
anunknown N x N matrix A

z(t) = As(t) D

We wish to estimate the mixing matrix A and the N-
dimensional source signa s(t). In the discrete time case
t=1,2,...,T weuse matrix notation X = AS, where X
and S are N x T matrices with the signals z; (t) and s;(t)
in the corresponding rows. We also denote the unmixing
matrix W = A~L.

When the sourcesarei.i.d, stationary and white, the nor-
malized minus-log-likelihood of the observed data X is

L(W;X) = —log|det W| + % Zh(Wix(t)), 2
it

where W; isi-throw of W, h(:) = —log f(-), and f(-) is
the probability density function (pdf) of the sources. Con-
sistent estimator can be obtained by minimization of (2),
also when h(-) is not exactly equal to —log f(-). Such
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quasi-ML estimation is practical when the source pdf is un-
known, or is not well-suited for optimization. For exam-
ple, when the sources are sparse or sparsely representable,
the absolute value function or its smooth approximation is
a good choice for h(-) [4]. Here we will use a family of
convex smooth approximations to the absol ute value

hi(e) = le| =Tlog(1 + cf) ©)
hale) = Ah(c/A) (4)

with \ a proximity parameter: hy(c) — |c] as A — 07.
Widely accepted natural gradient method does not work
well when the approximation of the absol ute value becomes
too sharp. In this work we suggest a relative Newton
method, which overcomes this obstacle, and provides fast
and very accurate separation of sparse sources.

2. RELATIVE OPTIMIZATION (RO) ALGORITHM

We propose the following algorithm for minimization of the
quasi-ML function (2)

1. For k = 1,2, ..., until convergence
2. Compute current source estimate Uy, = W, X;;

3. Startingwith V' = I (identity matrix), compute V',
producing one or few steps of a conventional op-
timization method, which sufficiently decreases the
function L(V; Uy);

4, Update the estimated separation matrix
Wit1 = Vipa W,

5. End

The relative (natural) gradient method [5, 6] is a partic-
ular instance of this approach, when the standard gradi-
ent descent step is used in p.4. The following remarkable
property of the relative gradient is also preserved in gen-
eral case: given current source estimate U, the algorithm
progress does not depend on the original mixing matrix.
This means that even nearly ill-conditioned mixing matrix
influences the convergence of the method not more than a
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starting point. Convergence analysis of the RO-algorithmis
presented in [1]. In the following we will use one Newton
step in p.4 of the method.

3. HESSIAN EVALUATION

Thelikelihood L(W; X) isafunction of a matrix argument
W . the corresponding gradient is also a matrix

GW)=VLW;X)=-Ww-T+ %h’(WX)XT, (5)

where b/ (W X) isamatrix with the elements ' (W X);; ).
TheHessian of L(W; X) isalinear mapping H defined via
the differential of the gradient

dG = HdW (6)

We can also express the Hessian in standard matrix form
converting W into a long vector w = vec(W) using row
stacking. We will denote the reverse conversion W =
mat(w). Let

L(w, X) = L(mat(w), X) (7

so that the gradient g(w) = VL(w;X) = vec(G(W))
Thendg = Hdw, where H is N2 x N2 Hessian matrix.

3.1. Hessian of —logdet W
The differential of thefirst termin (5)
dG = dW 1) = —AT(aw™) AT, (8)
where A = W~1L. Particular element of the differential
dGj = —Ai(dWT) AT = —Trace A A;(dW7T), (9)

where A; and A7 arei-th row and j-th column of A respec-
tively. Thereforethek-throw of H, wherek = (i—1) N +j,
contains the matrix A7 A; stacked column-wise

Hy, = vecl (47 A4,)T (10)
32. Hessanof 73, , h(Wyz(t))

is ablock-diagonal matrix with thefollowing N x N blocks

B = %zt:h”(me(t))x(t)xT(t), m=1,.,N (1)

4. NEWTON METHOD

Newton method often convergesfast and provides quadratic
rate of convergence. However, its iteration may be costly,
because of the necessity to compute the Hessian matrix and

solve the corresponding system of equations. In the next
section wewill seethat this difficulty can be overcomeusing
the relative Newton method.

First, let us consider the standard Newton approach, in
which the direction is given by solution of the linear equa
tion

Hy = —VL(w;X) (12)

where H = V2L (w; X) is the Hessian of (7). In order to
guarantee descent direction in the case of nonconvex objec-
tive function, we use modified Cholessky factorization* [7],
which automatically finds such adiagonal matrix R, that the
matrix H + R is positive definite, and providesa solution to
the modified system

(H + R)y = =V L(w; X) (13)

After the direction y is found, the new iterate w™ is given
by wt = w + ay where the step size « is determined
by exact or backtracking line search, which guarantees
monotonic decrease of the objective function at every
iteration.

Complexity of the Newton step TheHessianisa N2 x N2
matrix; its computation requires N * operationsin (10) and
N3T operations in (11). Solution of the Newton sys-
tem (13) using modified Cholessky decomposition, requires
N /6 operations for decomposition and N * operations for
back/forward substitution. Totally, we need 2N * + N3T +
N /6 operations for one Newton step. Comparing this to
the cost of the gradient evaluation (5), which is equal to
N2T, we conclude that Newton step costs about NV gradient
steps when the number of sourcesis small (say, up to 20).
Otherwise, the third term become dominating, and the com-
plexity growsas NS.

5. RELATIVE NEWTON METHOD

In order to make the Newton algorithm invariant to the value
of mixing matrix, weintroduce the relative Newton method,
which is aparticular instance of the RO-algorithm. This ap-
proach simplifies the Hessian computation and the solution
of the Newton system.

5.1. Basic relative Newton step

The optimizationin p.4 of the RO-algorithm is produced by
a single Newton-like iteration with exact or backtracking
line search. The Hessian of L([;U) has aspecia structure,
which permitsfast solution of the Newton system. First, the
Hessian of — log det T given by (10), becomesvery simple

1\We use the MATLAB code of modified Cholessky factorization by
Brian Borchers, available at http://www.nmt.edu/"borchers/ldit.html




and sparse, when W = A = I: eachrow of H

H, = vecT(eieJT), 14

contains only one non-zero element, which is equal to 1.
Here e; is an N-element standard basis vector, contain-
ing 1 at j-th position. Remaining part of the Hessian is
block-diagonal. There are various techniques for solving
sparse symmetric systems. For example, one can use sparse
modified Cholessky factorization for direct solution, or al-
ternatively, conjugate gradient-type methods, possibly pre-
conditioned by incomplete Cholessky factor, for iterative
solution. In both cases, Cholessky factor is often not as
sparse as the original matrix, but it becomes sparser, when
appropriate matrix permutation is applied before factoriza-
tion (see for example MATLAB functions CHOLINC and
SYMAMD.)

5.2. Fast relative Newton step

Further simplification of the Hessian is obtained by con-
sidering its structure at the solution point U, = S. Off-
diagonal elements of m-th block of the second term of
V2L(I;S) given by (11), are equal to

w1 . .
Bj == Et)h”<sm(t))si(t)sj<t), i =1, Ny i # ]

When the sources are independent and zero mean, we have
the following zero expectation

E{h"(sm(t))si(t)s;(t)} =0, m,i # j,

hence the off-diagonal elements B} converge to zero as
sample size grows. Therefore we use a diagona approxi-
mation of this part of the Hessian

1 .
By = =3 W' un®)ud(t),i =1, N; m=1,., N,
t

(15)
where u,,, (t) are current estimates of the sources. In order
to solve the simplified Newton system, let us return to the
matrix-space form (6) of the Hessian operator. Let us pack
the diagonal of the Hessian given by (15) into NV x N matrix
D, row-by-row. Taking into account that A = I in (8), we
will obtain the following expression for the differential of
the gradient

dG = HdW =dWT + D © dw, (16)

where*®” denotes element-wise multiplication of matrices.
For an arbitrary matrix Y’

HY =YT +DoY. (17)
In order to solve the Newton system

Yi+pDovy=aG (18)

we need to solve N (N — 1)/2 systems of size 2 x 2 with
respect to Y;; and Yj;

DY + Yy Gij, i1=1,.N;7=1,.,i—1
Dﬂ}f]l + }rm = Gji (29

The diagonal elements Y;; can be found directly from the
set of singleequations D;;Y;; + Y;; = G;. Inorder to guar-
antee descent direction and avoid saddle points, we mod-
ify the Newton system (19), changing the sign of the nega-
tive eigenvalues [7]. Namely, we compute analytically the
eigenvectors and the eigenvalues of 2 x 2 matrices

D; 1
1 Dy )’

invert the sign of the negative eigenvalues, and force small

eigenvalues to be above some threshold (say, 10~ of the
maximal one in the pair). Than we solve the modified sys-
tem, using the eigenvectors already obtained and the modi-
fied eigenvalues.

Complexity of thefast Newton step. Computing the diag-
onal of the Hessian by (15) requires IV 2T operations, which
is equal to the cost of the gradient computation. Solution
cost of the set of 2x2 linear equations (19) isabout 15N 2 op-
erations, which is negligible compared to the gradient cost.

5.3. Sequential Optimization

Optimization of the likelihood function becomes more and
more difficult with the decrease of the smoothing parameter
A. Therefore, we use sequentia optimization with gradual
reduction of \, see[1] for details.

6. COMPUTATIONAL EXPERIMENTS

The sources were represented by artificial sparse data with
Bernoulli-Gaussian distribution

1
15) =pb(s) + (1 =) =
generated by the MATLAB function SPRANDN. We used
the parametersp = 0.5 and o = 1.

In al experiments we used backtracking line search.
Figure 1 shows typical progress of different methods ap-
plied to the artificial data with 5 mixtures of 10k samples.
The fast relative Newton method converges in about the
same number of iterations as the relative Newton with exact
Hessian, but significantly outperformsiit in time. Natural
gradient in batch mode requires much more iterations, and
has a difficulty to converge when the smoothing parameter
A in (4) becomestoo small.

In the second experiment, we demonstrate the advan-
tage of the batch-mode quasi-ML separation, when deal-
ing with sparse sources. We compared the the fast relative

exp(—sz/Zgz),
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Fig. 1. Progress with iteration/time of different algorithms.
Relative Newton with exact Hessian — dashed line, fast rel-
ative Newton — continuous line, natural gradient in batch
mode — squares.

Newton method with stochastic natural gradient [5, 6], Fast
ICA [8] and JADE [9]. Stochastic natural gradient and Fast
ICA used tanh nonlinearity. Figure 2 shows separation of
artificial stochastic sparse data: 5 sources of 500 samples,
30 simulation trials. The quality of separation is measured
by interference-to-signal ratio (ISR) in amplitude units. As
we see, fast relative Newton significantly outperforms other
methods, providing practically ideal separation with the
smoothing parameter A = 10~%. More experiments with
natural images are presented in [1].
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Fig. 2. Separation quality: 30 simulation trials.

7. CONCLUSIONS

We introduced arelative optimization framework for quasi-
ML blind source separation, and a relative Newton method
as its particular instance. Efficient approximate solution of
the corresponding Newton system provides gradient-type
computational cost of the Newton iteration.

Experiments with sparsely representable artificial data
and natural images show that quasi-ML separationis practi-
cally perfect when the nonlinearity approaches the absolute
value function. The corresponding optimization problemis
solved efficiently by the relative Newton method using se-
quential optimization with gradual reduction of smoothing
parameter.
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