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ABSTRACT

This paper addresses the problem of calibrating FLIR im-
ages of a scene that are acquired at different time points to
construct information for Moving Target Indication (MTI) and
change detection. A signal modelis developed to identify varia-
tions and imperfections of a FLIR sensorin time. This modelis
utilized to compensate for relatively slow variations of a bias in
the FLIR sensor via a Fourier-based processing. Furthermore,
a two-dimensional adaptive filtering method is developed to
compensate for variations of Image Point Response (IPR) of a
FLIR sensor as well as sub-pixel changes in the relative coor-
dinates of the sensor-target over time. Results with time series
FLIR data of a scene with an airborne helicopter and a ground
target are provided.

I. INTRODUCTION

A classical problem in surveillance with various types of
sensors such as radars, optical or infra-red [1]-[2] involves
examining a scene at various time points and fusing the
information of these sensors for image registration, or de-
tecting what we refer to as a change. For example, in
surveillance with spaceborne or airborne optical devices,
the user utilizes optical images of a scene at different time
points to detect changes in, e.g., the environment or the
enemy’s arsenal. Forward-looking infra-red (FLIR) de-
vices have also been used to detect changes in a scene to
detect moving targets or man-made structures.

A fundamental problem associated with these systems
is that the “stationary background” (also referred to
as clutter) should exhibit the same behavior (signature)
when viewed at different time points. We refer to this
scenario as perfectly calibrated sensors. Unfortunately,
perfectly calibrated sensors do not exist in practice. In
the ideal case of perfectly calibrated sensors, the change
in two images can be detected by simply subtracting one
image from the other. With uncalibrated sensors, the
differencing operation is not practical. This is due to the
fact that most of these dual sensory systems seek to detect
subtle (weak) changes. Unfortunately, the calibration er-
ror’s power exceeds a change’s power in most practical
scenarios.
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In this paper, we examine the problem of fusing infor-
mation in uncalibrated time series FLIR imagery for Mov-
ing Target Indication (MTI) or change detection. FLIR
sensors, similar to optical sensors, rely on an integration
interval in time to capture the radiating sources in the
imaging environment. A longer integration interval yields
a better signal to noise and signal to sensor non-linear
error ratio. On the other hand, a small interrogation in-
terval 1s required to capture subtle changes particularly
in the FLIR-MTTI problems. Due to this, the time series
FLIR imagery suffer from a non-linear error that we refer
to as horizontal scan bias. In Section 11, we provide a sig-
nal model for the scan bias error, and present a method
for calibrating time series FLIR imagery to compensate
for this source of error.

A more common form of mis-calibration in sensory sys-
tems (FLIR, optical, radar, etc.) is associated with vari-
ations is Image Point Response (IPR) or Point Spread
Function (PSF) in time. A simpler version of this is-
sue is referred to as sub-pizel registration. Variations of
IPR corresponds to a physical phenomenon that is as-
sociated with a sensor circuitry system (gain and phase
delay) as well as the sensor physical structure. In Section
III, we will provide a model for this, and outline a two-
dimensional adaptive filtering method to calibrate FLIR
imagery for this source of error.

Finally, we present results using a set of time series
FLIR imagery in Section IV. This database provides two
different types of MTI and change detection problems.
One involves detecting an airborne helicopter that rapidly
appears in and disappears from the imaging scene. The
other example involves a ground targets that exhibits slow
IR changes in time. The merits of the methods that are
described in Sections II and IIT will be studied for these
two types of targets.

II. HORIZONTAL SCAN BIAS
CALIBRATION

We denote the time FLIR imagery that are acquired
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in time via f(z,y,t) where (,y) is the image plane and
t identifies the time domain. A discrete set of measure-
ments of this 3D signal is made, e.g., f(z:,y;,tx). Con-
sider the images that are acquired at two different time
points, e.g., t = t1 and t = £2. For notational simplicity,
we denote them as

fl(xiayj)

(1)

f(xia y]atl)a

and
f2(xiayj):f(xiayjat2)' (2)
Under the null hypothesis (i.e., there is no moving target

or change in the imaging scene), these two images at a
fized scan line y; can be related via

(3)

where a;(z;) is an unknown slowly-fluctuating (bias) sig-
nal. However, in presence of a relative change in the two
images (e.g., a moving target), the model becomes

oz, y5) = filesyy) + aj(e),

fo(zi,uy) = filma,uy) + ag(zs) + fe(zi,uy), (4)

where f.(zi,y;) identifies the change.
By constructing the simple difference of the two images,
ie.,

fa(zi, y;) = fa(zi, 95) — fi(®s, u5)
:a](xi) + fe(ﬂﬁi,y]), (5)

we obtain a statistic that is equal to the change infor-
mation if there is no bias problem, i.e., a;(z;) = 0; in
practice, this condition cannot be met. In this case, our
problem is to first obtain an estimate of the bias signal,
calibrate the first image with that estimate, and then con-
struct the difference signal. The procedure to obtain such
an estimate is described next.

As we mentioned earlier, the bias signal of a FLIR sen-
sor is a relatively slow-fluctuating signal with respect to
the actual target signature (otherwise, the sensor is highly
defective and cannot produce useful image information).
Meanwhile, a typical change in a time series FLIR im-
agery that is due to a moving or dynamic target is fairly
localized and, thus, rapid. This implies that by a se-
vere one-dimensional lowpass filtering of the second image
f2(zi,y;) in the &; domain, the signature of the change
will be significantly suppressed. Meanwhile, since the bias
signal a;(z;) is a slowly-fluctuating (lowpass) function, it
is unaffected by lowpass filtering.

Thus, the lowpass filtered signal for f>(z:,y;) can be
identified by

(6)

where firpr(zi,y;) is the lowpass filtered version of the
first image f1(zs,y;). Thus, an estimate of the bias signal
can be constructed using the difference of the lowpass
filtered first and second images; that is,

fQLpp(xi,y]) ~ flLPF(xiayj) + a](xi)a

(7)

dj(z:) = forpr(xi,y5) — fiopr(®i, 95)-

We denote the first image that is calibrated by the esti-
mated bias signal by

fl(xiayj):fl(xiayj) + aAJ(xi)' (8)

Then, the change in the FLIR image can be detected via
the difference of the second image and the above cali-
brated first image; that is,

fd(xiayj) = f2(xiayj) - fl(xiayj)
= fe(xiayj)' (9)

It is crucial to note that the (one-dimensional) lowpass
filtering should only be performed in the horizontal do-
main #; at a fixed scan line y;. This is due to the fact
that the bias signal is a highly-fluctuating function in the
y; domain. Filtering in the scan y; domain results in
further smearing and streaking of the bias signal in the
target signature and, thus, is undesirable.

The above horizontal scan bias signal calibration re-
moves the biased scan lines in fi(zs, y;), and artificially
adds the biased scan lines of the other image. The resul-
tant calibrated difference image fd(xi, y;) shows a signif-
icant reduction in the undesirable scan lines with respect
to the uncalibrated difference image fq(%:,y;). However,
the outcome can be further improved by a bias signal cali-
bration using the ensemble of the entire time series image
data. For this, we define the average of the ensemble via

K
fo(VEi,?/J) = % Z f(l?i,y],tk)~ (10)
k=1

Since the scan bias lines appear in a random order in the
y; domain as tp varies while the background FLIR sig-
nature remains unchanged, this average signal possesses
a significantly weaker scan bias signal. Moreover, since
any change signature may appear in only a few frames
of the time series, the change signatures are also weak
compare to the background FLIR signature. Thus, the
average image fo(x;, y;) provides a good representation of
the background FLIR signature with minimal scan bias
signal and change.

In this case, the average image fo(zs,y;) is a suitable
candidate to remove scan bias signal in every member of
the time series image. For this, we exploit the same ra-
tional that we used earlier to relate the severely lowpass
filtered (one—dimensional in the horizontal z; domain) ver-
sions of the two members. Let forpr(zi,y;) be the low-
pass filtered of the average image, and frirpr(z:,y;,tx)
be the lowpass filtered of the k-th FLIR image. Then,

these two can be related via

(11)

where ak](xi) is the undesirable scan bias signal in the
k-th FLIR image. Thus, an estimate of this bias signal
can be constructed using the following:

Jorpr(zi,y5) = forpr(mi,y;) + ary (),

Ay

(12)

(xi) = forpr(zi,y5) — frrpr(zi, y;).




Then, an estimate of the k-th FLIR image without bias
scan lines can be obtained from

i) (13)

For notational simplicity, we use fi(z:,y;), k=1,2,.. K
to identify these bias-calibrated FLIR images in the fol-
lowing discussion.

frleiyy) = flzi, g, te) + an;(z

III. ADAPTIVE IPR CALIBRATION

As we pointed out in the introductory section, almost
all sensory systems suffer from variations in IPR when
they are used to interrogate the same scene.
much more subtle sensor variations with a dynamic range
that is less than a FLIR sensor bias signal that was de-
scribed in the previous section. The modeling of IPR
variations are examined next.

Consider the FLIR imagery (after bias calibration)
that are acquired at two different time points, e.g.,
fi(zs,y;) and fo(z;,y;). Under the null hypothesis (i.e.,
no change), in the continuous image domain (z,y) these
two images can be related via

fo(z,y) = fi(z,y) *x h(z,y)

//fwﬁ—n,y—ﬁ) W, 8) dn 4B, (14)

where x*x denotes two-dimensional convolution in the spa-
tial domain, and h(z,y) is an unknown (miscalibration)
impulse response which depends on the variations of the
FLIR sensors in time. Hence, one has to perform a blind
calibration of the two images. A method for this using a
two-dimensional adaptive filtering and its implementation
via a signal subspace processing method are described in
[4], [5]; this is briefly outlined next.

Adaptive filtering methods have been suggested to
solve the above-mentioned blind calibration problem in
one-dimensional cases [3]. To apply these adaptive filter-
ing methods in the two-dimensional problems, consider
the discrete version of the model in (1):

Falwiyy) = Z Z honn f1(x

m=—ngz n=—ny

These are

i — mAy,y; — nAy),

(15)
where (A, A,) represent the sensor sample spacing in
the (z,y) domain. In the adaptive filtering approach, the
second FLIR image fa(xi,y;) is estimated via

731’?/] = Z Z hmn fl

m=—ngz n=—ny

Ja( T —mAg,y; — ndy);

(16)
mn are determined based
on minimizing the squared error between fo(z:,y;) and
f2(zs,y;) (the LMS algorithm [3]). Then, the statistic

used for MTT or change detection is constructed via

f2(xiayj) - f2(xiayj)'

the estimated coefficients A

fd(xiayj) = (17)

Unfortunately, solving the above-mentioned two-
dimensional adaptive filtering problem in a conventional
finite-memory computer is a formidable task. An alterna-
tive practical method, called signal subspace processing,
is introduced in [4], [5] to solve this problem. This is
achieved via projecting f2(z;,y;) into a set of orthogonal

basis functions that span the linear signal subspace of

v = [ filzi — mAg, y; —nly);

oy ]
The orthogonal basis functions are formed via, e.g., the
Gram-Schmidt procedure. The details of this can be
found in [4], [5].

m=—Nzg,...,Ng, N = —Ny,..

IV. RESULTS

We use a FLIR database that is composed of K = 178
time frames that are acquired within approximately 12
seconds to study the merits of the methods that were
described in Sections IT and I1I. Figure 1a shows the FLIR
image that is measured; this image exhibits the bias scan
lines. Figure 1b is the bias scan calibrated image.

Figure 1a. MO3LWO003: Uncalibrated

Figure 1b. MO3LWOO03: Bias Scan Calibrated




In this experiment, a helicopter briefly appeared in the
imaging scene in the fourth frame of the FLIR time se-
quence. Figure 2a shows the difference between the third
and fourth frames without any calibration. In addition
to the helicopter, the scan bias line and variations of the
sensor [PR results in formation of erroneous change infor-
mation. Figure 2b is the signal subspace processing (SSP)
difference that is obtained after utilizing the two calibra-
tions that are discussed in Sections II and III; for the
SSP difference, the helicopter signature is more promi-
nent than the surrounding clutter signature.

Figure 2a. MO3LWO003 & MO3LW004: Uncalibrated Difference
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Figure 2b. MO3LWO003 & MO3LW004: Calibrated Difference
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The final example involves the information in the entire
178 frames after the bias calibration is performed. The
solid line in Figure 3 shows the signature of a target on
the ground versus time after its mean value is removed.
The dashed and dotted lines, respectively, are the same
signatures for ground clutter and foliage. These results
indicate that the ground target exhibited gradual change
in time while the clutter and foliage remian approximately
unchanged. This behavior could be exploited to segment

the signature of man-made targets whose thermal radia-
tion show gradual variations (e.g., an engine cooling off
or warming up) in time. We should point out that the
SSP method compensates for this form of gradual and
subtle change in two consecutive time frames. However,
by processing frames that are separated further in time,
e.g., frames 1 and 178, the change is detectable though it
is weak.

Figure 3. Mean Calibrated Sigantures versus Time
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V. SUMMARY

This paper presented methods for modeling imperfec-
tions in time for a FLIR sensor.
scribed to blindly calibrate for bias scan error signal and
IPR variations of a FLIR sensor. Results were provided
to show the merits of these algorithm for MTT and ground
target detection.

Two methods were de-
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