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ABSTRACT

A partial differential equation (PDE)-based feature-level
image fusion approach is proposed for multisensory
image segmentation. The energy functional of the
proposed fusion model is a weighted sum of several
functionals, each constructed based on the characteristics
of the sensor image. The weight selection decides the
way that the model handles redundant, conflicting, or
complementary information involved in the multisensory
data. The method is implemented using level sets and is
fast enough for real-time segmentation tasks. Finally the
algorithm is applied to the segmentation of x-ray and
visual images, and the results show that the fusion
algorithm is efficient, accurate, and robust.

1 INTRODUCTION

It has been shown that the segmentation accuracy has a
significant effect on feature distributions and
classification performance in object recognition
applications [3]. However, segmentation on monosensory
images may not produce satisfactory performance due to
the intrinsic ambiguity and incompleteness associated
with the data. In monosensory image segmentation, each
image generates false regions or edges. Several
approaches ([2,6,10,11]) have been developed to increase
the segmentation accuracy on monosensory images.
However, the processing times of these methods are
multiple times longer and thus, cannot be used in real-
time applications. Images acquired by different sensors
are generally partially redundant and partially
complementary, which can be used to reduce the
imprecision and to interpret the scene more accurately.
Unfortunately, the multisensory image segmentation
problem is not a straightforward extension of its
monosensory counterpart on multiple images. The fusion
algorithm must make smart decisions to eliminate the
redundancy, to include the complementary information,
and to resolve the confliction.

Among all levels at which the fusion can be
performed: pixel, feature, and decision, feature-level
fusion is well suited for real-time applications. On one
hand, the amount of data to be processed is greatly
reduced by focusing on the higher level image
representation of segmentation features. On the other
hand, the information loss during the fusion is not
essential since most significant features have been
preserved. 

By combining different modalities in segmentation,
we expect to achieve the following goals:
· Locate more accurate boundaries for the objects in the

scene.
· Eliminate false edges/regions as many as possible.
· For the false edges/regions that cannot be totally

eliminated, the significant difference between the
segmentation results on individual modalities can be
utilized to further separate false edges/regions from
true edges/regions.
In the PDE-based curve evolution methods, the

contour evolves according to the optimal flow derived
from the energy functional. Segmentation errors occur
when the images do not satisfy the assumptions based on
which the energy functional is constructed. Because this
type of method is local in nature, the curves tend to get
trapped by unexpected features before they reach the true
edges in the image, which causes under- or over-
segmentation errors. Since the unexpected feature that
entrapped the contours may show itself differently in
images acquired by other sensors, it may function as a
driving force to push the contour toward the true edge
and thus reduce the segmentation errors. In the proposed
model, the energy functional is a weighted sum of several
functionals, each constructed based on the sensors’
characteristics. Therefore, the method is applicable to the
case where the objects in the scene exhibit totally
different views between images. A priori information of
the scene and sensors can be employed to further boost
the processing speed so that the algorithm is more
suitable for real-time applications. 
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The paper is organized as follows: First, the
multisensory image segmentation methods are briefly
reviewed. Then, a real-time multisensory image
segmentation approach is presented. Finally, the
approach is applied to segmentation of the visual- and x-
ray images of bone-contaminated poultry meat, and the
results are presented.

2 MULTISENSORY IMAGE FEATURES AND
SEGMENTATION METHODS

Depending on the characteristics of the physical sensors
and target objects, the definition for edge and region on
multisensory images may vary. Bonnin [1] defines multi-
spectral edge point as a pixel where there are important
variations at least in one direction in its local
neighborhood of a property, in at least one spectral
image. This definition implies a logical OR between the
different spectral images of edge points. But it does not
solve the problem of the obvious displacement of an edge
between two spectral images. This problem has to be
taken into account and solved in the thinning edge and
chaining edge steps. In addition, the false edges caused
by artifacts and noises are not considered. By applying
the logical OR operation, the false edges will be
accumulated in the final edge map. Therefore, caution
needs to be taken when fusing edge maps. The majority
voting rule in [9] can eliminate false edges if they are
only observed in a limited range of bands. However, only
the most important edge information is preserved.
Similarly, the region of homogeneity implies a logical
AND between the homogeneity predicates in all spectral
images. The homogeneity criteria are usually
thresholdings of the homogeneity measures. The
measures can vary largely with different sensors, and
even for the same measure, the thresholds may be
different. The choice of the homogeneity measure and the
adjustment of its thresholds are usually guided by the
knowledge of the sensors’ physical characteristics.

One common scheme for multisensory image
segmentation, as shown in Fig. 1, is to obtain features
from individual sensor images, then combine these
monosensory features using simple fusion rules or within
the mathematical frameworks of Bayesian Theorem,
Fuzzy Theory, and Dempster-Shafer (DS) Theory. Note
that in order to utilize the rules in such frameworks, the
fusion problem first has to be modeled in that framework.
One application is to fuse SAR and optical images to
achieve better performance in detecting urban areas [4].
The fusion of individually segmented images is modeled
as a nonlinear optimization problem, where the objective
function is the sum of two terms: the mismatch between
the two fused segmentation maps and the discrepancies
between corresponding fused and original segmentations.
The handling of unmatched monosource features are
controlled by the penalization parameters on the second
term. One concern about this method is that ad hoc
calibrations of several parameters are necessary. Another
issue is that the nonlinear optimization problem is hard to
solve and can be too slow to be used real-time.
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Fig. 1. Fusion of individual segmentation results.

One can also build a segmentation map directly on all
images, as shown in Fig. 2. For example, in [5],
multisensory data are classified pixel by pixel using DS
theory to produce a labeled image (segmentation map).
However, the segmentation map needs to be further
refined to remove speckle errors. A natural PDE-based
scheme is to use the Munford-Shah (MS) functional by
treating the multisource images as a multichannel image
[7]. The limitation of this model is that it is not applicable
to the case where at least one image cannot be
approximated using a piece-wise constant image.
Besides, it is well known that the curve evolution based
on this model is extremely slow and therefore, cannot be
used in real-time applications. 

Image 1
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Fig. 2. Multichannel image segmentation.

3 A PDE-BASED MODEL FOR
MULTISENSORY IMAGE SEGMENTATION

The multisensory image segmentation can be modeled as
an optimization problem: locate the contours so that the
following energy functional is minimized:
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where Ei is the energy functional, wi is the controlling
weight, on the i-th image, and N is the total number of
images. First, each energy functional, Ei, is chosen
according to the characteristics of the corresponding
image. Thus, the model is applicable to essentially any
combination of sensors. Second, the weights can vary as
curve deforms. The weight selection is a demanding task
since it determines how information is handled.
Generally, the following rules can be applied:
· In case of redundancy, equal weights are used.
· In case of complementarity, the sources that contain

the most useful information have highest weights.
· In case of conflicts, the sources with more reliable

information have higher weights.
Therefore, the key issue is to identify the local

information content at a specific time. Two common
weight choices are constant weights and 0-1 weights.
· Constant weights: the weights do not change as

contours evolve. The optimal force on the contour is a
weighted sum of individual forces derived from each
functional. 

· 0-1 weights: all weights are set to 0 except for one set
to 1 at any specific time. Images are segmented one
after another, as shown in Fig. 3, each starting from the

V - 14

➡ ➡



previous segmentation. Since the initial estimation of
on one image is from the segmentation results of its
registered peers, the convergence is faster than
segmenting each modality independently. 

Image 1

Image 2
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Scheme 1

Segm.
Scheme 2

Region Map 1

Region Map N-1

Region MapImage N Segm.
Scheme N

Region Map 2

Fig. 3. Segmentation using 0-1 weights.

Simulations of the above two weight choices are
performed on the gray-scale test images shown in Fig. 4,
where I0 is the root image, and IA, IB are the two gray-
scale test images generated by diffusing and shading I0,
respectively. In IA, the edge information is totally lost
during diffusion, while in IB, although edge is well
preserved, the region R cannot be separated from its
background R  based only on the intensity information. 

I0 IA IB

R
_
R

Fig. 4. Gray-scale test images.

The energy functionals in (1) for the test images are
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where u and v are mean intensities inside and outside the
contour, respectively, 
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=φ  is the edge feature

metric, and α∈[0, 1] is a constant. E1 is used to maximize
the difference of the mean intensities inside and outside
of a smooth contour, while E2 is minimized when the
contour falls on the edge. The optimal flows derived from
E1 and E2 are the binary flow ([12])
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and the geodesic flow
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where C
v

 is the contour, Au and Av are areas inside and
outside the contour, respectively, N

r
is the unit normal,

and κ is the curvature. 
The results of the proposed model using both the

equal, constant weights and the 0-1 weights are shown in
Fig. 5 (a) and (b), respectively. It can be seen that the
convergence speed of (a) is faster than that of (b). In both
cases, the final contour is superior to the monosensory
results.

N=0 N=500 N=500 N=1000 N=6500

N=0 N=200 N=700

(a)

(b)

Fig. 5. Result on test images using (a)equal and constant
weights, and (b) 0-1 weights.

4 SEGMENTATION OF X-RAY AND VISUAL
IMAGES 

The proposed method is used to segment x-ray and visual
images of bone-contaminated poultry breast. The bones
to be detected are fan bones, the fan-shaped thin surface
bones that show differently in x-ray and visual images.
Monosensory segmentation on either mode is not
satisfactory. Visual images contain shadow and edge
features that may appear similar in color and shading to
bones. In x-ray images, the local contrast is good, but the
fan bone regions have similar intensity levels as the
thicker meat does, and therefore, the segmentation is
difficult.

An example of the registered images is shown in Fig.
6., where (a) and (b) are the clips of the visual and x-ray
images, respectively. The fan bone is marked out in each
image. The x-ray image and the red channel of the visual
image are overlapped to form the synthesized image in
(c). Significant mismatch between the two modalities is
observed due to different sensor sensitivities: one
common subject (such as a fan bone) may have distinct
views in the images of different modalities. 

Before fusion, the x-ray images are preprocessed to
remove the slow intensity variation caused by uneven
thickness of the meat using the feature extraction method
in [8]. The visual feature image for the x-ray clip in Fig.
6 is shown in Fig. 7(a). Fig. 7 (b) is the segmentation
result using (4) on the feature image. The segmentation
algorithm failed to separate the fan bone region totally
from the darker regions nearby.

The proposed fusion scheme is applied on the x-ray
feature image and the red channel image. The binary flow
in (2) is used throughout the segmentation procedure.
The initial contour is obtained by thresholding the red
channel of the visual image. The results using constant
and 0-1 weights are shown in Fig. 8 and Fig. 9,
respectively. 

From the test, the result using constant weights is
generally not as good as the result when 0-1 weights are
used. A major reason is that the significant mismatch
between the two images tends to cause over-
segmentation when constant weights are applied. The
scheme with 0-1 weights is not only effective in
allocating fan bone boundaries, but also robust to the
mismatch. 

The algorithm is tested on 51 fan bone-contaminated
image clips cut from the registered visual and x-ray
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images taken on-line in a poultry plant. The segmentation
results are assessed visually according to the closeness of
the contour to the true boundary. Results show that the
fusion schemes provide better performance than the
single-sensor scheme does. It is also observed that the
algorithm is capable of correcting monosensor
segmentation errors caused by limitations of both the
segmentation algorithm and sensor properties, as
illustrated in Fig. 10.

(a) visual image (b) x-ray image (c) synthesized image
 (fan bone boundaries are marked out)

Fig. 6. An example of registered visual and x-ray images.

(a) visual feature
of x-ray image

(b) segmentation result
(binary flow, N = 300)

Fig. 7. The x-ray feature image and its segmentation.

(a) N=500
(w1 = 0.2, w2 = 0.8)

(b) N=500
(w1 = 0.5, w2 = 0.5)

(c) N=500
(w1 = 0.8, w2 = 0.2)

Fig. 8. The segmentation result using constant weights.

(a) N=0
(w1 = 1, w2 = 0)

(b) N=50
(w1 = 1, w2 = 0)

(d) N=150
(w1 = 0, w2 = 1)

(e) N=300
(w1 = 0, w2 = 1)

(c) N=50
(w1 = 1, w2 = 0)

Fig. 9. The segmentation result using 0-1 weights.

(c) partially covered
fan bone, red channel

(d) serialized
segmentation

(a) under-segmentation,
red channel

(b) serialized
segmentation

Fig. 10. Comparison of results obtained from visual-based
segmentation and fusion using 0-1 weights.

The algorithm is implemented using level sets, and the
processing time on 160x160 image clips is no more than
500ms on a 900MHz Pentium III PC. Therefore, the
proposed scheme is suitable for real-time applications.

5 CONCLUSIONS

In this paper, a multisensory image segmentation scheme
is presented. The key issues of this scheme are weight

selection and functional construction. The experimental
results suggest that this algorithm is effective, accurate,
and fast. Future research will be focused on dynamic
weight selection and interpretation of segmentation
results.
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