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ABSTRACT 2. PROBLEM STATEMENT

Let K be the number of FIR channélg(ny,ns2), k= 1,...,
K, each of sizémy, x n). Using single-input-multi-output
(SIMO) model we have the following

We address the problem of image restoration in a multi-
channel system degraded by unknown blurs and additive
noise. To identify the unknown blurs, modelled as FIR

channels, we propose a subspace based method which ex- Ml na-l
ploits an orthogonality property betwesignal and noise yl,lo) = Z Z h(my, mo)a(ly —my, Iy — my)
subspaces. Finally to demonstrate the performance of the m1=0ma=0
proposed method, we run simulations and compare the re- +n(ly,12) 1)

sults with those of theross relatiormethod.
wherey ({1, 12) vi(li,02), ..y (L, )]E, bl o) =

= [

[hl(ll,lz), e hK(ll,lz)]T, l‘(ll,lz) andn(ll,lz) =

[n1(l1,12), ..., nk(l1,12)]", denote the outputimages, blurs,
1. INTRODUCTION input image, and independently distributed additive noise,
respectively. In this paper we are concerned to the follow-
ing problem: givenimy, ny) andyx (I1,02), k= 1,..., K,
each of size((m, — my + 1) x (ny — np + 1)), where
(my x ngy) denotes the size af(ly, l2), find hy (I1,12), k =
1,..., K, inthe absence of noise.

In numerous applications, multiple blurred observed images
of a single image are available whereas the original image
and the blurs are unknown.

Spurred by promising results in 1-D signals, recently

there has been a growing literature of so cakdgebraic 3. THE PROPOSED METHOD

methods applied to multichannel 2-D (image) restoration '

(2,5, 7,1, 4, 8]. Inblind setting, where blurs and input The 2.p SS method we present here extends the idea of
image are both unknown, in general there are three possiblgne corresponding 1-D method [3]. The originality of this
approaches to restore the original image, (i) first the blurs method comes from the fact that it exploits the separation
are estimated and then one of the available multichannelpetween the signal and noise subspaces, as well as the spe-
restoration methods is employed to recover the original im- cja| structure of the multichannel convolution matrix. This
age [2, 5, 1], (ii) the restoration filters are directly estimated |eads to an advantage because by exploiting the particular
[7, 1], and (iii) the inputimage is directly estimated without generalized block Toeplitz structure of the unknown multi-
estimating first the blurs or restoration filters [4, 8]. While channel convolution matri, the SS method does not re-
the s_econd and thlrd approaches are con_ceptually MOre aPuire the channel inputto be uncorrelated. In fact, as long as
pealing than the first one, we argue that in most cases it isihe estimated input covarian&yx (which will be defined

more convenient to restore the original image with known below) is full rank, the SS method can identify the channel
or estimated blurs, because we have more control on thgmpyse responsdsy (I1,ls), k = 1,..., K, whenH is full

characteristics of the desired image, i.e. restoration with.qjumn rank.
regularization.

Moreover unlike most of the single channel identifica-
In this paper, we propose a subspace (SS) based methotion methods, e.g. Wiener filter, the input signal autocor-
for 2-D blur identification in multichannel setting. relation does not need to be known for SS method and the
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noise variances, may be unknown so long as the column
dimensiondy = (my +my — 1) (ny +np, — 1) of the chan-
nel convolution matri¥H is known or can be estimated.

Consider anm,n, x 1) size sample vector obtained
from vectorizing a(m., x n,) square area taken from the
image output of thé-th channel

Yk = HkX+Nk (2)

where
Yk = [yg(h,lz),...,yg(h—mw—|—1,12—nw—|—1)]T
7Y gt o
H, = 0 .
0 np—1

0o aim
X = [l‘(ll,lz),...,l‘(ll—mt+l,lz—nt+1)]T,
N, has the same structure¥s, andH,gj),j =0,...,np—

1 denotes the 1-D multichannel convolution matrix corre-
sponding tah\!) = [hy(0,7), ..., hi(mu — 1, )],

r) 0 0
Hk] = . k 3 (3)
0 0 Al

my = My +mp — 1,0y = ny +np — 1, (Mg X ny) the
observation window to construct data matrix frgmp, and
(m: x n:) the size of the corresponding area in the input
image contributing to the observéth,, x n,,) area in the
outputimages.

Stacking allK -channel outputs gives us

Y = HX + N. 4)

[H,...Hg]”, andN =

whereY = [Y; ... Yx]", H
[Ni...Ng]’.

For the development of the SS method we use the fol-
lowing assumptions:

Al Kmyny > (mp+my —1)(np +nye — 1) andH has
the full column rankKmp, + my — 1)(ns + ny — 1).

A 2 ny(l1,15) is white with zero mean and is uncorrelated
with X(ll s 12)

Based on the equ. (4), the output covariance m#gix
of size Kmyny, x Kmyn, can be written in the form

Ry = E{YY"} = HRxH” + 031 (5)

where
Rx = E{XX"} (6)
and
Ry = F{NNT} = ¢%1 7

denote the covariance matrices of input signal and chan-
nel noise, respectively and{.} is the expectation operator.
The last term of (7) is the consequentAd?.

Additionally, we assume further that
A 3 Rx hasthe fullrankiy = (mp+my—1)(ns+ny,—1)

Through eigenvalue decomposition, the covariance ma-
trix Ry can be diagonalized as

[ x2 0

UTRyU = <o + o031 (8)
[ o2 0 0
0 o2 0
L 0 0 O-%(mwnw
where
2 > 0%, i=1,2,...,du; 9)
0'2»2 = 0'12\7, i=da+1,...,(Kmynyg). (10)

We can then partition the eigen-vectdyig; }X7+™+ into a
signal subspac¥® x and a noise subspadéy as

U=1[U1 ... Uiy Udyr - Ukmgns). (1)

Ux

Ux

Using the identification condition thdd has (m. +
mp — 1)(ny + np — 1) independent columns, we obtain

HRxH” =Ry — o3 I=Uxx3 UL  (12)
Accordingly, the unknown multichannel convolution ma-
trix satisfies

HRY? = UxSxV, (13)

whereV is an unknown unitary matrix. Since we assume
thatH is full column rank andR x is full rank, then® x has
full rank and

H=UxXxVR;/?, (14)

V-10



Itis clear then thaH and Uy live in the samely di- Accordingly, each eigen-vector & can also be par-
mensional space and are orthogonal to the noise subpacttioned into X' smaller vectors, each of size,, n,,
Uy. Note thatU x spans thely dimensional signal sub-

space whereally spans the noise subspace of dimension ul’()
Kmyny —da. U, = (19)

().

From the above observation, we have ug ()

It is clear that the orthogonality condition can be reformu-
vluy =0, (15) lated as

and consequently the following orthogonality relationship ~ U/ H=h"U; =0, i=du+1,..., Kmyn,  (20)
is satisfied

where
T
UyH = 0. (16) U(f)
LetH,,, ,, = H andﬁmw,nw be an alternative form U, = : ’ (21)

of constructing the 2-D convolution matrix, by scanning ()

first the rows then columns di,,k = 1,..., K. Then Uk

the uniqueness dfl in (16) is establised by the following @) ) )

proposition. an? (;:_acc:jmk has the appropriate structure such that (20) is
satisfied.

Proposition 1 [9] Assume:

. . Hence from the known nullspadé);} ™+« the un-
. w — w > — , w (N — > . . Mi=dp 1o 70 7
L K(my = Dno 2 (me = Lng, Kimo (ny = 1) 2 known impulse responsdscan be identified by minimizing

mt(nt - 1): My 2> My, andn,, > N,

- Kmuwnwe Kmynaw

2. HmwN,nw:Hmw,nw—lrHmw,nw—ermw—l,nw:Hmw,nhr J(h) — Z ||UTH||2 — Z ||UTh||2

andH,,, ,, are full-column rank, Nt ! Nt !

=dy =dy
then, the following conditions are equivalent: Kmuny
. = h' U,U7 | n 22
e H, , isnonzeroan®(H, , )CR(H,, , ); . dZ:H o (22)
wy w w w w w = H
7 . . 7 . .. R .

*H,, ., adH,, ., areproportionalieH,,, ., = To avoid the trivial zero solution, one of several possible

aHyp,, »,, Wherea is a scalar factor, constraints can be used to take into account some infor-

mation assumed or known about the channel, for example

|lh||* = 1. Clearly, the solution translates to a minimum
Generally the orthogonal relationship in equ. (16) is not eigenvector problem.

sufficient for the identification oH, if for not the special

structure ofH and if the conditions in Proposition 1 are not

whereR denotes the range space.

satisfied. As can be seen from the definitiodhfthe num- 4 SIMULATION

ber of unknown parameters is much smaller than the number

of elements oH. Making use of the special structurelf T test the performance of the proposed method we use sim-

we can solve the equ. (16) by minimizing a quadratic cost ylation. An image of size afl00 x 100) is passed through

function K = 4 FIR blurs, each of sizém;, x n;) = (5 x 5), with
Kmaoyny, coefficients drawn randomly from uniform distribution, and

Z | H|)?. a7 finally noise is added, with SNR = 30 dB. The original,

i=dp+1 blurred and noisy, and restored images are shown in Fig.

1. The restored image is obtained by using multichannel

constrained least-squares method with regularization, based
on the estimated blurs. Furthermore we compare also the
mean squared error (MSE) performance of the SS method

To solve this minimization, we will use the special struc-
ture of H. Remember that alk’ channel responses can be
written in a super vector

hy(:) against the cross-relation (CR) based method [2] and the re-
h— : (18) sultis shown in Fig. 2. As we can observe, the SS method
' outperforms the CR method, which confirms the result for
h(:) 1-D signals [6].
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Fig. 1. Simulation. (a) Original image. (b) 1 of 4 blurred

and noisy images; SNR=30 dBy;, x ny) = (5 x 5). (€)
Restored image.

5. CONCLUSION

MSE (dB)

-35 L 1 .

25 30 35 40 45
SNR (dB)

Fig. 2. Performance comparison of the SS method and the
CR method. MSE versus SNR.
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