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ABSTRACT

We address the problem of image restoration in a multi-
channel system degraded by unknown blurs and additive
noise. To identify the unknown blurs, modelled as FIR
channels, we propose a subspace based method which ex-
ploits an orthogonality property betweensignal andnoise
subspaces. Finally to demonstrate the performance of the
proposed method, we run simulations and compare the re-
sults with those of thecross relationmethod.

1. INTRODUCTION

In numerous applications, multiple blurred observed images
of a single image are available whereas the original image
and the blurs are unknown.

Spurred by promising results in 1-D signals, recently
there has been a growing literature of so calledalgebraic
methods applied to multichannel 2-D (image) restoration
[2, 5, 7, 1, 4, 8]. In blind setting, where blurs and input
image are both unknown, in general there are three possible
approaches to restore the original image, (i) first the blurs
are estimated and then one of the available multichannel
restoration methods is employed to recover the original im-
age [2, 5, 1], (ii) the restoration filters are directly estimated
[7, 1], and (iii) the input image is directly estimated without
estimating first the blurs or restoration filters [4, 8]. While
the second and third approaches are conceptually more ap-
pealing than the first one, we argue that in most cases it is
more convenient to restore the original image with known
or estimated blurs, because we have more control on the
characteristics of the desired image, i.e. restoration with
regularization.

In this paper, we propose a subspace (SS) based method
for 2-D blur identification in multichannel setting.

2. PROBLEM STATEMENT

LetK be the number of FIR channelshk�n�� n��� k � �� � � � �
K� each of size�mh�nh�. Using single-input-multi-output
(SIMO) model we have the following

y�l�� l�� �

mh��X
m���

nh��X
m���

h�m��m��x�l� �m�� l� �m��

�n�l�� l�� (1)

wherey�l�� l�� � �y��l�� l��� � � � � yK�l�� l���T , h�l�� l�� �
�h��l�� l��� � � � � hK�l�� l���T , x�l�� l�� andn�l�� l�� �
�n��l�� l��� � � � � nK�l�� l���T , denote the output images, blurs,
input image, and independently distributed additive noise,
respectively. In this paper we are concerned to the follow-
ing problem: given�mh� nh� andyk�l�� l��� k � �� � � � �K,
each of size��mx � mh � �� � �nx � nh � ���, where
�mx � nx� denotes the size ofx�l�� l��, findhk�l�� l��� k �
�� � � � �K, in the absence of noise.

3. THE PROPOSED METHOD

The 2-D SS method we present here extends the idea of
the corresponding 1-D method [3]. The originality of this
method comes from the fact that it exploits the separation
between the signal and noise subspaces, as well as the spe-
cial structure of the multichannel convolution matrix. This
leads to an advantage because by exploiting the particular
generalized block Toeplitz structure of the unknown multi-
channel convolution matrixH, the SS method does not re-
quire the channel input to be uncorrelated. In fact, as long as
the estimated input covarianceRX (which will be defined
below) is full rank, the SS method can identify the channel
impulse responseshk�l�� l��� k � �� � � � �K, whenH is full
column rank.

Moreover unlike most of the single channel identifica-
tion methods, e.g. Wiener filter, the input signal autocor-
relation does not need to be known for SS method and the
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noise variance��N may be unknown so long as the column
dimensiondH � �mw�mh����nw�nh��� of the chan-
nel convolution matrixH is known or can be estimated.

Consider an�mwnw � �� size sample vector obtained
from vectorizing a�mw � nw� square area taken from the
image output of thek-th channel

Yk � HkX�Nk (2)

where

Yk � �yTk �l�� l��� � � � �y
T
k �l� �mw � �� l� � nw � ���T

Hk �

�
���

H
���
k � � � H

�nh���
k �

�
...

� H
���
k � � � H

�nh���
k

�
���

X � �x�l�� l��� � � � � x�l� �mt � �� l� � nt � ���T �

Nk has the same structure asYk, andH�j�
k � j � �� � � � � nh�

� denotes the 1-D multichannel convolution matrix corre-
sponding toh�j�k � �hk��� j�� � � � � hk�mh � �� j��,

H
�j�
k �

�
������

h
�j�
k � � � � �

� h
�j�
k

...
...

...
...

...
...

� � � � � h
�j�
k

�
������ � (3)

mt � mw �mh � �� nt � nw � nh � �, �mw � nw� the
observation window to construct data matrix fromyk, and
�mt � nt� the size of the corresponding area in the input
image contributing to the observed�mw � nw� area in the
output images.

Stacking allK-channel outputs gives us

Y � HX �N� (4)

whereY � �Y� � � �YK �T , H � �H� � � �HK �T , andN �
�N� � � �NK �T .

For the development of the SS method we use the fol-
lowing assumptions:

A 1 Kmwnw � �mh�mw � ���nh�nw � �� andH has
the full column rank�mh �mw � ���nh � nw � ��.

A 2 nk�l�� l�� is white with zero mean and is uncorrelated
withx�l�� l��.

Based on the equ. (4), the output covariance matrixRY

of sizeKmwnw �Kmwnw can be written in the form

RY � EfYYT g � HRXH
T � ��NI (5)

where

RX � EfXXTg (6)

and

RN � EfNNTg � ��NI (7)

denote the covariance matrices of input signal and chan-
nel noise, respectively andEf�g is the expectation operator.
The last term of (7) is the consequent ofA2.

Additionally, we assume further that

A 3 RX has the full rankdH � �mh�mw����nh�nw���

Through eigenvalue decomposition, the covariance ma-
trix RY can be diagonalized as

UTRYU �

�
	�
X �
� �

�
� ��NI (8)

�

�
����

��� � � � � �
� ��� � � � �
...

...
...

...
� � � � � ��Kmwnw

�
���� �

where

��i � ��N � i � �� 
� � � �� dH� (9)

��i � ��N � i � dH � �� � � � � �Kmwnw�� (10)

We can then partition the eigen-vectorsfUig
Kmwnw
i�� into a

signal subspaceUX and a noise subspaceUN as

U � �U� � � � UdH	 
z �
UX

UdH�� � � � UKmwnw	 
z �
UN

�� (11)

Using the identification condition thatH has �mw �
mh � ���nw � nh � �� independent columns, we obtain

HRXH
T � RY � ��NI � UX	�

XU
T
X � (12)

Accordingly, the unknown multichannel convolution ma-
trix satisfies

HR
���
X � UX	XV� (13)

whereV is an unknown unitary matrix. Since we assume
thatH is full column rank andRX is full rank, then	X has
full rank and

H � UX	XVR
����
X � (14)
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It is clear then thatH andUX live in the samedH di-
mensional space and are orthogonal to the noise subpace
UN . Note thatUX spans thedH dimensional signal sub-
space whereasUN spans the noise subspace of dimension
Kmwnw � dH.

From the above observation, we have

UT
NUX � �� (15)

and consequently the following orthogonality relationship
is satisfied

UT
NH � �� (16)

LetHmw�nw � H and �Hmw �nw be an alternative form
of constructing the 2-D convolution matrix, by scanning
first the rows then columns ofhk� k � �� � � � �K. Then
the uniqueness ofH in (16) is establised by the following
proposition.

Proposition 1 [9] Assume:

1. K�mw � ��nw � �mt � ��nt, Kmw�nw � �� �
mt�nt � ��, mw � mh, andnw � nh;

2. Hmw�nw ,Hmw�nw��,Hmw�nw��, �Hmw���nw,Hmw�nh ,
and �Hmh�nw are full-column rank,

then, the following conditions are equivalent:

� H
�

mw�nw is nonzero andR�H
�

mw �nw��R�H
�

mw�nw�;

� H
�

mw�nw
andHmw �nw are proportional, i.e.H

�

mw �nw
�

�Hmw�nw , where� is a scalar factor,

whereR denotes the range space.

Generally the orthogonal relationship in equ. (16) is not
sufficient for the identification ofH, if for not the special
structure ofH and if the conditions in Proposition 1 are not
satisfied. As can be seen from the definition ofH, the num-
ber of unknown parameters is much smaller than the number
of elements ofH. Making use of the special structure ofH,
we can solve the equ. (16) by minimizing a quadratic cost
function

KmwnwX
i�dH��

kUT
i Hk

�� (17)

To solve this minimization, we will use the special struc-
ture ofH. Remember that allK channel responses can be
written in a super vector

h �

�
��
h��
�

...
hK�
�

�
�� (18)

Accordingly, each eigen-vector ofRX can also be par-
titioned intoK smaller vectors, each of sizemwnw

Ui �

�
���
u
�i�
� �
�
...

u
�i�
K �
�

�
��� (19)

It is clear that the orthogonality condition can be reformu-
lated as

UT
i H � hTUi � �� i � dH � �� � � � �Kmwnw (20)

where

Ui �

�
���
U
�i�
�
...
U
�i�
K

�
��� � (21)

and eachU�i�k has the appropriate structure such that (20) is
satisfied.

Hence from the known nullspacefUig
Kmwnw
i�dH��

, the un-
known impulse responsesh can be identified by minimizing

J�h� �

KmwnwX
i�dH��

kUT
i Hk

� �

KmwnwX
i�dH��

kUTi hk
�

� hT

�
KmwnwX
i�dH��

UiU
T
i



h (22)

To avoid the trivial zero solution, one of several possible
constraints can be used to take into account some infor-
mation assumed or known about the channel, for example
khk� � �. Clearly, the solution translates to a minimum
eigenvector problem.

4. SIMULATION

To test the performance of the proposed method we use sim-
ulation. An image of size of����� ���� is passed through
K � � FIR blurs, each of size�mh � nh� � ��� ��, with
coefficients drawn randomly from uniform distribution, and
finally noise is added, with SNR = 30 dB. The original,
blurred and noisy, and restored images are shown in Fig.
1. The restored image is obtained by using multichannel
constrained least-squares method with regularization, based
on the estimated blurs. Furthermore we compare also the
mean squared error (MSE) performance of the SS method
against the cross-relation (CR) based method [2] and the re-
sult is shown in Fig. 2. As we can observe, the SS method
outperforms the CR method, which confirms the result for
1-D signals [6].
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Fig. 1. Simulation. (a) Original image. (b) 1 of 4 blurred
and noisy images; SNR=30 dB;�mh � nh� � ��� ��. (c)
Restored image.

5. CONCLUSION

In this paper, we have proposed a SS based method to iden-
tify blurs in multichannel image restoration problem. The
proposed method makes use of the orthogonality between
the signal subspace and the noise subspace, as a result of the
eigen decomposition of the estimated autocovariance matrix
of the observed data. From the simulation we observed that
the SS method performs better than the CR method, pro-
posed in the literature [2].
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