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ABSTRACT

Time-reversal imaging is addressed for sensing an elastic
target situated in an acoustic waveguide. It is demonstrated
that the channel parameters associated with a given
measurement may be determined via a genetic-algorithm
(GA) search in parameter space. Target classification
based on time-reversal imagery is  considered, with this
implemented via a relevance-vector machine.

1. INTRODUCTION

The use of acoustic backscattered signals to detect and
classify underwater targets has attracted significant
attention in recent years [1-7].  This involves
discrimination between targets and non-targets as well as
from background clutter (e.g. surface roughness). There
are several factors that make the underwater detection and
classification processes a challenging problem. First, the
target scattered signal is distorted by multi-path
propagation, which is dependent on the environmental
acoustic parameters, such as target and receiver location,
water depth, and seabed geoacoustic parameters.
Consequently, an efficient algorithm is needed to recover
the target scattered signatures or extract features which are
independent of such channel parameters. Second, the
target scattered signal may be submerged by the
competing clutter caused by biological sources in the
water column, surface and bottom reverberation effects
and system noise. A signal processing algorithm is
required to enhance the target scattered signal from
background noise and clutter. Generally, we only have
prior knowledge about the target to be detected or
classified, and lack  prior knowledge of the false targets.
   Recently, the Time-reversal mirror (TRM) [8] has been
demonstrated in underwater acoustic environments [9,10],
with this also referred to as phase conjugation in the
frequency domain. TRM has significant potential for
underwater communications. The same principal may be
exploited in the context of imaging. In this paper we
consider time-reversal imaging of elastic targets situated in
an acoustic waveguide. A relevance vector machine
(RVM) [11] classifier is built to identify mine-like targets
from false targets in a shallow water channel, based on the
TRM imagery. The paper is organized as follows: In
section 2, we discuss time-reversal theory for an extended

target. In section 3, a channel inversion algorithm based on
a GA and TRM imagery is developed. In section 4, we
present the in-channel classification problem in detail
including RVM classifier design and feature extraction.
Example results are presented in section 5, followed in
section 6 by conclusions.

2. TIM E-REVERSAL THEORY

The displacement potential ψ  is related to the

displacement u via ψ∇=u . Assume that a target is

defined by a surface S, and this surface resides within a
medium characterized by Green’s function ),( rr ′G , for

observation point r and source point r ′ . Assuming that the
normal component of displacement on the target surface is
negligible (rigid target), we have
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where );(inc srrψ  represents the incident fields. We

simplify the discussion by first considering an infinite
homogenous medium characterized by wavenumber k, and
therefore )(),()( rrrr ′−−=′+∇ δGk22 . For this case (1)

becomes
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By including );(inc srr ′ψ  explicitly within the integral in

(2), we directly account for the fast phase variation of
)( r ′ψ  due to the excitation field. The term );,( su rrr ′

has relatively slow-varying phase.
    Using ),();(inc ss G rrrr ′−=′ψ , and assuming that the

incident field is zero (or may be eliminated) at the receiver
position r, then (2) may be expressed as

SdGGu sss ′′′′= �
S
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where in (4) we note explicitly the dependence of the
scattered fields on both the source and receiver positions,
rs and r, respectively.
    In the following discussion we assume that the target is
large enough with respect to wavelength such that a
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stationary-phase analysis of the integral in (4) is
appropriate. Assuming M stationary points, for the kth
receiver of a linear array in water channel, we have
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where )(ˆ sm,,u rrr ′  accounts for the new factors associated

with the stationary-phase analysis.
     Using multiple receivers, our goal is to image the M
scattering centers. We perform this via phase conjugation
of (5), in the frequency domain, and then this signal is
propagated numerically into the computational domain,
from the receiver at rk. This process accounts for
propagation from the scattering centers to the receiver. To
account for propagation from the source to the scattering
center, we also multiply the aforementioned phase-
conjugated response by the response of propagation from
the source to the scattering center.
     Performing the above phase conjugation, accounting
for propagation from the source rs and the receiver rk to
point r in the image domain, and finally performing an
inverse Fourier transform to convert the signal to the time
domain, we obtain the space-time signal
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It is important that the channel parameters associated with
GTR are consistent with the actual channel parameters
      The time-reversal image ),( tI s r  is a four-dimensional

quantity (space-time). In this paper, we only use space-
dependent image for classification and channel inversion,
which is defined as

)0,,(I),(Î ss =≡ tjiji                                  (7)

where (i,j) denoted the sampled points in two-dimensional
space (down range and water depth).

3. CHANNEL INVERSION ALGORITHM

We employ the time-reversal image itself to estimate the
appropriate parameters for GTR. Assume channel
parameters Φ  are employed in GTR, and that the associated
time-reversal image is represented as ),,(Î s Φji . We treat

the inversion for the channel parameters as an optimization
problem, and find the set of parameters from the defined
search space, which minimize a cost function defined in
terms of ),,(ˆ

s ΦjiI . Genetic algorithms (GA) and simulated

annealing (SA) are two general techniques for multi-
dimensional optimization problems, and these have been
used for acoustic-channel inversion [12,13].
        Define the equivalent probability mass function
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If the image is tightly focused about the strong scatterer
located in the region Λ , the );,p( Φji  should have low

entropy. By contrast, the entropy increases as the image
defocuses. The first component of the GA cost function is
the entropy of );,p( Φji , defined as
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      The second component of the cost function is
analogous to that discussed in [12,13]. Let )( nkr ω represent

the scattered signal measured at receiver k, for frequency

n
� . Further, let );i,j,(�c nk Φ  represent the computed

scattered response at frequency 
n

� , for a point scatterer

located at a point Λ∈),( ji . Assuming Nf frequencies, the

second component to the cost function is
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and the total cost function is )(E)(E)E( 21 Φ+Φ=Φ γ . A

genetic algorithm (GA) is employed to determine those
parameters Φ  that minimize )E(Φ , and we have found that

setting 1=γ  yields good results.

4. TARGET CLASSIFICATION

We now consider target classification based on TRM
image data. Five distinct objects are considered in the
channel. Two of the targets are deemed “ targets of
interest” , and the other three are deemed “ false targets” .
The targets of interest are defined as hypothesis one (H1),
and the false targets are the null hypothesis, Ho.

4.1 Feature extraction

The classification is performed on the signal );,( ΦjiI s
ˆ .

Specifically, we fix the depth j and view the data as a
function of range i, for simplicity. In the examples
presented below we assume the target depth j is known, for
simplicity, although this can be estimated from the data.
    When we process the time-reversal signature );,( ΦjiI s

ˆ ,

for fixed j and variable i, we have range-dependent data.
The features are extracted from this data. In particular,
assume that d(i) represents the range-dependent data,
where i denotes the range index. The first type of features
are based on moments of d(i). In particular, the positional
probability density function p(i) and central moments ml

are calculated as
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where we assume I range samples of interest. We do not
use the first moment m1 (or mean) as a feature, since it
changes with a change in the target-sensor distance.
    In addition, we consider features based on the spectral
(Fourier) properties of d(i). In this case the Fourier
transform of d(i) is uniformly divided into a set of

V - 6

➡ ➡



frequency bands, and the features are the energy within
each band.

4.2 Relevance vector  machine (RVM ) classifier

Given a feature vector v, our goal is to perform
classification based on the probability that v is associated
with hypotheses Ho and H1, denoted respectively )p(Ho v

and )p(H1 v . Since the false targets constitute an infinite

set, we here assume no knowledge of )p(Ho v . Hence the

classification is performed based entirely on )p(H1 v ,

representative of the targets we expect to encounter. In
addition, we design a single classifier for the two targets.
     Assume that we have access to “ training”  data { vn} n=1,N,
representative of example feature vectors from the
target(s) of interest, all characteristic of hypothesis H1. We
define the function
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where ),( ng vv  is a kernel that quantifies the similarity

between feature vectors v and vn. The wn are weights,
cumulatively represented by the vector w, which define the
importance of training feature vector vn on the classifier,
defined in terms of f(v;w). The probability that feature
vector v is associated with H1, for given weights w, is
defined in terms of the logistic link function
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    The relevance-vector machine (RVM) [11] is a design
procedure to optimize weights w and the “most-relevant”
training examples vn (those with non-zero weights). The
RVM has proven to be an effective tool because it seeks to
achieve two competing objectives: (i) maximization of
(14) for feature vectors v in the training set { vn} n=1,N ,
while (ii) the sparseness prior forces most of the weights
wn in (12) to vanish. The details of the RVM may be found
in [11].

5. EXAM PLE RESULTS

5.1 Example results with measured data

The data was collected in a bay near Panama City, FL,
USA, and the channel depth was approximately 8 m, and
the range between the sensors and targets was
approximately 20 m. The system consisted of a vertical
array of 12 receivers, with an isotropic source situated at
the midpoint of the array. The middle of the array was 3.4
m below the air-water interface, and the sensor bandwidth
was 1.3-10 KHz. The receivers platform moves along a
straight line and records a sequence of observations for
different target-receiver orientations. Based on the
measured acoustical response, we estimate the channel
parameters, employing a GA and the cost function

discussed above. Then, we synthesize the TRM images
based on estimated channel parameters.
     The channel parameters Φ  considered were the water
depth, water sound speed, sound speed in the bottom, the
density of the bottom, and the attenuation of the bottom.
In Table 1 we present a comparison between the
parameters Φ  extracted via the GA, and estimates of
channel parameters based on estimations made at the
experiment site. We see from Table 1 that the water depth,
the water sound speed, and bottom sound speed are in
good agreement with on-site estimations. In Fig. 2(b) we
present the TRM imaging result of in-channel data, based
on estimated channel parameters in Table 1, comparing
with raw data (before TRM processing) in Fig. 2(a). The
TRM image is synthesized in cross-range (corresponds to
the position of the receiver array) and down-range
(corresponds to the target-receiver distance which is
parallel to the bottom) domain, for a given target depth,
which is estimated using GA. We see that the targets
scattered signals are well focused after TRM imaging, and
the signal noise ratio is improved significantly as well.

5.2 Classification results with synthesized data

The measurement did not consider a sufficient number of
targets and false targets for statistically meaningful
classification results, and therefore the subsequent results
are based on synthesized data. The wideband bistatic
scattered fields are computed for all targets via a free-field
finite-element method (FEM) simulation. The channel
response is calculated using a modal channel model. The
target-receiver distance (parallel to the bottom) ranges
from 50 to 200 meters. A 28-element linear array receiver
is employed perpendicular to the bottom. The array is 2
meters long and its center is situated 4 meters above the
sea bottom. The center of each target is located 0.18 m
above the sea bottom. A two-layer geoacoustic model is
considered (see Fig. 1). The data covers the frequency
band 50 Hz to 10 KHz. Each of the five targets is rotated
about its axis over 360o, with 1o angular sampling, thereby
constituting multiple synthesized measurements. The
RVM classifier is trained using data of distance 100 m,
and tested for distance of 50, 75, 125, 150 and 200 m. It is
assumed in all cases that the channel parameters are
known exactly when performing time-reversal imaging.
The classification results are shown in Fig. 3(a). The
multiple observations are fused using the linear method
(sum over the SVM outputs for multiple observations),
and angular sampling is 5 degree. Fig. 3(b) shows the
classification results for the cases that channel parameters
are not known exactly, the TRM imaging is performed
based on the GA estimated channel parameters, 10
independent GA runs are considered in Fig. 3(b).
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6. CONCLUSIONS

Time-reversal imaging was addressed for sensing an
elastic target situated in an acoustic waveguide. The theory
of wideband time-reversal imaging of an extended target is
investigated. It is demonstrated that the channel
parameters associated with a given measurement may be
determined via a genetic-algorithm (GA) search in
parameter space, employing a cost function based on the
time-reversal image quality. Example GA channel-
parameter-inversion results are presented for measured
data. Target classification based on time-reversal imagery
is also considered for the synthesized data. The classifier
is implemented via a relevance-vector machine.
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Fig. 1  Channel model
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Fig. 2 Measured in-channel data  (a)before TRM processing (b) after

TRM processing for a given target depth, using the channel parameters
estimated in Table. 1
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Fig. 3  Classification results based on TRM images, classifier is trained
using data of distance 100 m, and tested for distance of 50, 75, 125, 150
and 200 m. (a) TRM imaging performed with known channel parameters

(b) TRM imaging performed with GA estimated channel parameters

Table 1.  Channel inversion results

Prior value Estimated Search range
Water depth(m) 8.23 8.3 (7.73,8.73)

Sound Speed in
water(m/s)

1490 1489.21 (1440,1540)

Sound Speed in
bottom(m/s)

1705 1655.25 (1605 ,1805)

Density of
bottom(g/cm^3)

N/A 3.086 (1,3.5)

Attenuation of
bottom(dB/kmHz)

N/A 0.504 (0.1 ,0.9)

hydrophone
array

source

target

Sound speed in water  1520m/s
Bottom density of 1.5 g/cm3

Bottom  attenuation factor  0.28 dB/KmHz
Sound speed in bottom of 1800 m/s
Water depth 8 m

(a)

(b)
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