Hongwei Liu, Nilanjan Dasgupta and Lawrence Carin

Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708-0291

Time-Reversal Imaging for Wideband Underwater Target Classification

ABSTRACT

Time-reversal imaging is addressed for sensing an elastic
target situated in an acoustic waveguide. It is demonstrated
that the channel parameters associated with a given
measurement may be determined via a genetic-algorithm
(GA) search in parameter space. Target classification
based on time-reversal imagery is considered, with this
implemented via a relevance-vector machine.

1. INTRODUCTION

The use of acoustic backscattered signals to detect and
classify underwater targets has attracted significant
attention in recent years [1-7]. This involves
discrimination between targets and non-targets as well as
from background clutter (e.g. surface roughness). There
are severa factors that make the underwater detection and
classification processes a chalenging problem. First, the
target scattered signa is distorted by multi-path
propagation, which is dependent on the environmental
acoustic parameters, such as target and receiver location,
water depth, and seabed geoacoustic parameters.
Consequently, an efficient algorithm is needed to recover
the target scattered signatures or extract features which are
independent of such channel parameters. Second, the
target scattered signa may be submerged by the
competing clutter caused by hiological sources in the
water column, surface and bottom reverberation effects
and system noise. A signal processing agorithm is
required to enhance the target scattered signal from
background noise and clutter. Generally, we only have
prior knowledge about the target to be detected or
classified, and lack prior knowledge of the false targets.
Recently, the Time-reversal mirror (TRM) [8] has been
demonstrated in underwater acoustic environments [9,10],
with this also referred to as phase conjugation in the
freqguency domain. TRM has significant potential for
underwater communications. The same principal may be
exploited in the context of imaging. In this paper we
consider time-reversal imaging of elastic targets situated in
an acoustic waveguide. A relevance vector machine
(RVM) [11] classifier is built to identify mine-like targets
from false targets in a shallow water channel, based on the
TRM imagery. The paper is organized as follows: In
section 2, we discuss time-reversal theory for an extended
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target. In section 3, a channel inversion algorithm based on
a GA and TRM imagery is developed. In section 4, we
present the in-channel classification problem in detail
including RVM classifier design and feature extraction.
Example results are presented in section 5, followed in
section 6 by conclusions.

2. TIME-REVERSAL THEORY

The displacement potential ¢ is related to the
displacement u via y=Qgy. Assume that a target is

defined by a surface S, and this surface resides within a
medium characterized by Green's function G(r,r'), for

observation point r and source point r'. Assuming that the
normal component of displacement on the target surface is
negligible (rigid target), we have
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where . (r;r,) represents the incident fields. We
simplify the discussion by first considering an infinite
homogenous medium characterized by wavenumber k, and
therefore (0% +k?)G(r,r')=-gr-r'). For this case (1)
becomes
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By including ¢, (r';r.) explicitly within the integral in

(2), we directly account for the fast phase variation of
¢(r') due to the excitation field. The term u(r,r’;r,)

has relatively slow-varying phase.
Using ¢, (r';r,)=-G(r',r,), and assuming that the

incident field is zero (or may be eliminated) at the receiver
position r, then (2) may be expressed as

z//(r;rs)=_[u(r,r’,rS)G(r’,rS)G(r,r’)dS' (4)

where in (4) we note explicitly the dependence of the
scattered fields on both the source and receiver positions,
rsand r, respectively.

In the following discussion we assume that the target is
large enough with respect to wavelength such that a
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stationary-phase analysis of the integral in (4) is
appropriate. Assuming M stationary points, for the kth
receiver of alinear array in water channel, we have

Wt = 0 (ot )G )G ) O)

where ((r,r, r,) accounts for the new factors associated

with the stationary-phase analysis.

Using multiple receivers, our goa is to image the M
scattering centers. We perform this via phase conjugation
of (5), in the frequency domain, and then this signal is
propagated numerically into the computational domain,
from the receiver a r.. This process accounts for
propagation from the scattering centers to the receiver. To
account for propagation from the source to the scattering
center, we aso multiply the aforementioned phase-
conjugated response by the response of propagation from
the source to the scattering center.

Performing the above phase conjugation, accounting
for propagation from the source rg and the receiver ry to
point r in the image domain, and finally performing an
inverse Fourier transform to convert the signal to the time
domain, we obtain the space-time signal

()=S0 (1 10)G(r 1)Grn(r 1 Jexp(ict)deo (6)

It isimportant that the channel parameters associated with
Grr are consistent with the actual channel parameters
The time-reversal image | (r,t) is a four-dimensiona

quantity (space-time). In this paper, we only use space-
dependent image for classification and channel inversion,
which is defined as

1.6G,1)=1,G,j,t=0) (7)
where (i,j) denoted the sampled points in two-dimensional
space (down range and water depth).

3. CHANNEL INVERSION ALGORITHM

We employ the time-reversal image itself to estimate the
appropriate  parameters for Gir. Assume channel
parameters ¢ are employed in G, and that the associated
time-reversal image is represented asi (i, j,®). We treat

the inversion for the channel parameters as an optimization
problem, and find the set of parameters from the defined
search space, which minimize a cost function defined in
terms of { (i, j,»). Genetic algorithms (GA) and simulated

annealing (SA) are two general techniques for multi-
dimensional optimization problems, and these have been
used for acoustic-channel inversion [12,13].

Define the equivalent probability mass function
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If the image is tightly focused about the strong scatterer
located in the region A, the p(i,j;®) should have low
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entropy. By contrast, the entropy increases as the image
defocuses. The first component of the GA cost function is
the entropy of p(i j;®), defined as
E(®) =~ > p(i.j;®)Inp(i j;®)
(i, ))OA
The second component of the cost function is
analogous to that discussed in [12,13]. Lét r, (), ) represent

the scattered signal measured at receiver k, for frequency
o, . Further, let ¢ (e;ijo) represent the computed
scattered response at frequency o, , for a point scatterer
located at a point(j,j)OA . Assuming N; frequencies, the
second component to the cost functionis
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and the total cost function iSE(®)=E(®)+ )E,(®@)- A

genetic algorithm (GA) is employed to determine those
parameters ¢ that minimize g(o), and we have found that

setting )y =1 yields good results.
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4. TARGET CLASSIFICATION

We now consider target classification based on TRM
image data. Five distinct objects are considered in the
channel. Two of the targets are deemed “targets of
interest”, and the other three are deemed “false targets’.
The targets of interest are defined as hypothesis one (H,),
and the fal se targets are the null hypothesis, H,,.

4.1 Featureextraction
The classification is performed on the signa | j:p)-

Specifically, we fix the depth j and view the data as a
function of range i, for simplicity. In the examples
presented below we assume the target depth j is known, for
simplicity, although this can be estimated from the data.
When we process the time-reversal signature fs(i JiP)

for fixed j and variable i, we have range-dependent data.
The features are extracted from this data. In particular,
assume that d(i) represents the range-dependent data,
where i denotes the range index. The first type of features
are based on moments of d(i). In particular, the positional
probability density function p(i) and central moments m
are calculated as
2
) = L )
2,00
where we assume | range samples of interest. We do not
use the first moment m; (or mean) as a feature, since it
changes with a change in the target-sensor distance.
In addition, we consider features based on the spectral
(Fourier) properties of d(i). In this case the Fourier
transform of d(i) is uniformly divided into a set of
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frequency bands, and the features are the energy within
each band.

4.2 Relevance vector machine (RVM) classifier

Given a feature vector v, our goa is to perform
classification based on the probability that v is associated
with hypotheses H, and H;, denoted respectively P(H, V)

and GINE Since the false targets constitute an infinite
set, we here assume no knowledge of p(H V) - Hence the
classification is performed based entirely on P(HV) -

representative of the targets we expect to encounter. In
addition, we design asingle classifier for the two targets.

Assume that we have access to “training” data{Vin} n=1n,
representative of example feature vectors from the
target(s) of interest, all characteristic of hypothesis H;. We
define the function

fviw) = > wg(v.v,) +w, (12)

where g(v,v,) is a kernel that quantifies the similarity

between feature vectors v and v,. The w, are weights,
cumulatively represented by the vector w, which define the
importance of training feature vector v, on the classifier,
defined in terms of f(v;w). The probability that feature
vector v is associated with H;, for given weights w, is
defined in terms of the logistic link function

explf(v;w)] (13)
1+exp[f(v;w)]

The relevance-vector machine (RVM) [11] is a design
procedure to optimize weights w and the “most-relevant”
training examples v, (those with non-zero weights). The
RVM has proven to be an effective tool because it seeksto
achieve two competing objectives: (i) maximization of
(14) for feature vectors v in the training set {Vn}n=in »
while (ii) the sparseness prior forces most of the weights
W, in (12) to vanish. The details of the RVM may be found
in[11].

p(H,|v,w) =

5. EXAMPLE RESULTS

5.1 Exampleresults with measured data

The data was collected in a bay near Panama City, FL,
USA, and the channel depth was approximately 8 m, and
the range between the sensors and targets was
approximately 20 m. The system consisted of a vertical
array of 12 receivers, with an isotropic source situated at
the midpoint of the array. The middle of the array was 3.4
m below the air-water interface, and the sensor bandwidth
was 1.3-10 KHz. The receivers platform moves along a
straight line and records a sequence of observations for
different target-receiver orientations. Based on the
measured acoustical response, we estimate the channel
parameters, employing a GA and the cost function

discussed above. Then, we synthesize the TRM images
based on estimated channel parameters.

The channel parameters ® considered were the water
depth, water sound speed, sound speed in the bottom, the

density of the bottom, and the attenuation of the bottom.
In Table 1 we present a comparison between the
parameters ¢ extracted via the GA, and estimates of
channel parameters based on estimations made at the
experiment site. We see from Table 1 that the water depth,
the water sound speed, and bottom sound speed are in
good agreement with on-site estimations. In Fig. 2(b) we
present the TRM imaging result of in-channel data, based
on estimated channel parameters in Table 1, comparing
with raw data (before TRM processing) in Fig. 2(a). The
TRM image is synthesized in cross-range (corresponds to
the position of the receiver array) and down-range
(corresponds to the target-receiver distance which is
paralel to the bottom) domain, for a given target depth,
which is estimated using GA. We see that the targets
scattered signals are well focused after TRM imaging, and
the signal noise ratio isimproved significantly aswell.

5.2 Classification results with synthesized data

The measurement did not consider a sufficient number of
targets and false targets for statistically meaningful
classification results, and therefore the subsequent results
are based on synthesized data. The wideband bistatic
scattered fields are computed for all targets via a free-field
finite-element method (FEM) simulation. The channel
response is calculated using a modal channel model. The
target-receiver distance (parallel to the bottom) ranges
from 50 to 200 meters. A 28-element linear array receiver
is employed perpendicular to the bottom. The array is 2
meters long and its center is situated 4 meters above the
sea bottom. The center of each target is located 0.18 m
above the sea bottom. A two-layer geoacoustic model is
considered (see Fig. 1). The data covers the frequency
band 50 Hz to 10 KHz. Each of the five targets is rotated
about its axis over 360°, with 1° angular sampling, thereby
constituting multiple synthesized measurements. The
RVM classifier is trained using data of distance 100 m,
and tested for distance of 50, 75, 125, 150 and 200 m. It is
assumed in all cases that the channel parameters are
known exactly when performing time-reversal imaging.
The classification results are shown in Fig. 3(a). The
multiple observations are fused using the linear method
(sum over the SVM outputs for multiple observations),
and angular sampling is 5 degree. Fig. 3(b) shows the
classification results for the cases that channel parameters
are not known exactly, the TRM imaging is performed
based on the GA estimated channel parameters, 10
independent GA runs are considered in Fig. 3(b).




6. CONCLUSIONS

Timereversal imaging was addressed for sensing an
elastic target situated in an acoustic waveguide. The theory
of wideband time-reversal imaging of an extended target is
investigated. It is demonstrated that the channel
parameters associated with a given measurement may be
determined via a genetic-algorithm (GA) search in
parameter space, employing a cost function based on the
time-reversal image quality. Example GA channel-
parameter-inversion results are presented for measured
data. Target classification based on time-reversal imagery
is also considered for the synthesized data. The classifier
isimplemented via a relevance-vector machine.
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Fig. 2 Measured in-channel data (a)before TRM processing (b) after
TRM processing for a given target depth, using the channel parameters
estimated in Table. 1
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Fig. 3 Classification results based on TRM images, classifier istrained
using data of distance 100 m, and tested for distance of 50, 75, 125, 150

and 200 m. (a) TRM imaging performed with known channel parameters

(b) TRM imaging performed with GA estimated channel parameters

Table 1. Channel inversion results

Prior value | Estimated | Searchrange
Water depth(m) 8.23 8.3 (7.73,8.73)
Sound Speed in 1490 1489.21 (1440,1540)
water(m/s)
Sound Speed in 1705 1655.25 (1605 ,1805)
bottom(nv/s)
Density of N/A 3.086 (1,35)
bottom(g/cm”3)
Attenuation of N/A 0.504 (0.1,0.9)
bottom(dB/kmHz)




