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ABSTRACT can use the degrees of freedom inherent to the phased array for
ghost artifact cancellation. Another more sophisticated technique
Wwas presented by Walsh et al. [8] who used adaptive filters to im-
Jprove the signal-to-noise ratio (SNR) in the image.

In this paper, we study the reconstruction problem from both
least-squares and maximum-likelihood points of view. We also
incorporate prior knowledge of the coil sensitivities via a Bayesian
framework. This priori knowledge can obtained via, for example,
calibration or electromagnetic modeling.

We consider signal processing methods for phased-array magneti
resonance imaging (MRI). A theoretical description of a phased-
array MRI data model is presented and three image reconstructio
algorithms are proposed to estimate the effective image pixels. An
analysis is provided to show how the new algorithms compare to
conventional reconstruction methods.

1. INTRODUCTION
The development of MRI was sparked in the early 1950’s when 2. THE PHASED-ARRAY MRI DATA MODEL
Bloch and Purcell were awarded the Nobel Prize for their discov-
ery of nuclear magnetic resonance. The idea of using multiple re-
ceiver coils, oiphased-arraycoils, for MRI is about a decade old.

The first implementation of a phased-array MR imaging system

is probably due to Roemer et al., but the ideas of using multiple citation of a thin slice _
, parallel to thee( y)-plane, say at = zo.
detectors for MRI can be traced back to the late 1980’s. A good At a given coordinater, y, zo and timet, let G.. () andG, (t) be

summary of this technology during the last ten years is provided N the strength of the external magnetic field alongthendy axes

the review paper [1]. Recently, a substantial body of research hasand define

focussed on sophisticated techniques for phase encoding together , .

with the use of gradient coils (with the primary aim of increasing _ / _ / 1

the imaging speed). This work includes tbensitivity encoding ka(t) 0 Ge(r)dr, and ky(t) 0 Gy(r)ar (1)

for fast MRI(SENSE) technique [2] anSiimultaneous Acquisition . . . . . .
of Spatial Harmonics (SMASH) imagirig]. Owing to the last -(Ij-gr?:a,infc; ﬁa?g:r? breeaerli\t/tirn coll, the noise-free received time
decade’s intensive research on the topic, phased-array MR imaging 9

A basic MRI signal model can be derived from the Bloch equa-
tion [9, 10]. Letz, y, z be orthogonal unit vectors that span the
Cartesian coordinate system under consideration, and suppose that
a suitable gradient magnetic field is applied to enable selective ex-

is now becoming a mature field and arrays with up to 16 elements  iwot —ix(ka (Da+hy (£)y)
have been designed and used for imaging experiments [4]. z(t) =e oty Pz, y)C(z, y)e ’ dz dy
In principle, with phased-array technology, an increase in )

imaging speed equal to the number of parallel coils can be
achieved. However, the use of large coil arrays imposes a numbeiwhere A is a constant, ang(z,y) is proportional to the “trans-
of difficulties, in particular for high field strengths. Most impor- verse magnetization” (which is essentially the quantity of inter-
tantly, since the coil sensitivities are typically unknown variables est in the imaging)C(z,y) is the sensitivity of the coil (i.e.,
(which are very difficult to model for high magnetic fields), opti- the “antenna beampattern”). Eq. (2) shows that the received sig-
mal and artifact-free image reconstruction is a challenge. The mostnal at timet is essentially equal to the 2D Fourier transform of
commonly used method for image reconstruction is the so-calledC(z, y)p(x,y) evaluated ak. (t), ky(t). Hence, by choosing an
“sum-of-squares” (SoS) method. However, it is not optimal; in appropriate external time-varying magnetic fi€lg(t) andG, (t),
particular, it introduces bias in the estimated image. the 2D Fourier transform of'(z, y) p(z, y) can be sampled at sev-

A number of somewhat more sophisticated techniques for im- eral points{k., k, } and the MR image can be obtained via inverse
age reconstruction with phased-array coils have appeared during-ourier transform.
the last decade. For example, as an alternative to the sum-of-  In the phased-array MRI data model case, debe anM-
squares reconstruction, Debbins et al. [5] suggested to add the imvector that contains the image pixels of interest, suppose that the
agescoherentlyafter their relative phase was properly adjusted. k-space is sampled & points and let us arrange these measured
Bydder et al. [6] proposed a method that attempted to estimate thepoints in ani -vectorsy, after the inverse Fourier transform. Also,
coil sensitivities from the image; the resulting image has somewhatlet ¢, be ani-vector of coil sensitivities associated with thth
less variance than the SoS reconstruction, however, it may still suf-coil and theM pixels. Let us assume thdty (n)} is constant
fer from bias. Kellman and McVeigh [7] proposed a method that throughout a small regiof2 consisting ofM pixels in the image,

i.e., that
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Forn € Q of interest, the data model is

S:ch+E (4)

whereS = [s: Sn.| With s, being the measurement of

thekt” coil, andE is a “local” noise which is zero-mean, indepen-
dent between two different points in space domain, but possibly
correlated between the receiver coils. For knawp in (4) can be
determined via least-squares, whereas for unknewie problem
becomes more complicated.

3. METHODS

3.1. Sum-of-Squares (SoS) Reconstruction
With the SoS method, the data is first pre-whitened@y'/?

3.3. Coil-Average Reconstruction

The key problem to extragi from each column of signay, is to
“cancel” the coil sensitivityc,. The local constancy of; con-
notessy = cyp, k = 1,---,n.. Therefore the normalization
of s, eliminates the coil sensitivityg; in each coil, and they
average gives the normalizgdvia

Nc

R 1
P = e 2 Tl @)
c k1 k

For this method, the SoS norm is also used to normglize

3.4. Bayesian Reconstruction

Under the assumptions made #h the columns of the matri§

to account for the noise coloration, and thereafter each measured@'® (conditioned op andc) independent and circularly symmetric

pixel is taken as an estimate of the coil sensitivity. For simplic-
ity, we neglect the noise coloratia@ in our description. Then the
reconstructed pixel is obtained via

(6)

S [si(n)?
k=1

Gaussian with meapc” and covarianc€. Hence the p.d.f. of
is equal to
)

(8)

Suppose that the prior knowledge of the coil sensitivitesan

p(Slp.e) = 7| Q| 7" exp (—H(s —pe)Q™?

Clearly, if the noise level goes to zero the SoS-estimate converged?@ described by assuming thatis Gaussian with meap. and

to p(n) = />4, lex(n) p(n)[? which is in generahot equal

to p(n). Therefore, SoS reconstruction yields in general severely
biased reconstructionsyen in the noise-free cas&nlessc(n)

is constant throughout the image (which is certaimbf the case

in practice), this bias depends on the pixel numband hence it
cannot be corrected for é(n) is unknown.

3.2. Singular Value Decomposition Reconstruction

Singular value decomposition (SVD) is widely implemented in
signal processing applications. In ideal noise-free environment,
the left singular vector and the right singular vectoSois the de-
sired pixel vectolp and the coil sensitivity vectat. However, the
introduction of noise increases the rank of the mastito greater

than one, and hence the left singular vector and the right singular

vector corresponding to the maximum singular value will yield the
least-squares estimate pfandc. In the case of rarlS) = n,
the pixel vector is estimated as

p=u1 (6)
where
A1 0
S=[w - w]|: e e,
—U’_/ 0 - A —V’_’
—E,_/

and; > X2 > --- > A\, uy is the M dimensional left singular
vector of S; furthermorew, is then. dimensional right singular
vector ¢ = 1,--- ,n.). There is a scaling ambiguity in the sense
that no uniquep satisfies the decomposition. For instance, we can
use the norm of the SoS solution to scaléo recover the image
contrast in different local regions.

covarianceA. Then the p.d.f. ot is given by

pe) =5 A exp (A e = )

) ©)

From Bayesian theorem, the p.d.f8fis expressed as

p(Slp) = / p(S, c|p) de = / p(Slp. c)p(e) de

2
= /7r7"“|A|7lexp (—”Aflﬂ(c—u) )
2
) de

M |QIT exp (—H(s —p)Q™?
2
a2 e m)

— 7r7(M+1)nc|Q|7"c|A|71

/exp (—”(5 - pch)Q?

2
>dc

(10)

The incorporation o# priori knowledge of model parameters
via Bayesian statistics has a number of the distinct advantages.
For example, the degree of uncertainty aboaan be easily intro-
duced as a model parametkr In the extreme case that there is a
complete lack of priori information about, we can takgqu arbi-
trary andA very large (i.e., letting it grow without bound). In the
other extreme case when we have full knowledge of the parameter
¢, we can simply takgs equal to its known value and sAt = 0
(in this case, the p.d.f. in (9) effectively reduces to a Dirac-like
impulse function).

The above integral result is a product of an exponential func-

tion multiplied with an determinant, where both havé)a% Rp
part. It appears not to be directly straightforward to maximize the
total p.d.f. with respect t@, and as an approximation we simply
minimize the sum of the two norms inside the integral in (10) with
respect to both the parametgr&ndc. For this purpose, we use a




cyclic algorithm: 80 :
1. begin initialize po,T,i =0 j :‘é‘i
2. compute cg : cg < argmin. F(c; po) 701 - average x b
@Z —i+1 +- bayes Z

compute p : pi+1 < argmin, F(p;c;)

ci+1 < argmin. F(c; p;)

until F(pit1,civ1) — F(pi,ei) <T
6. returnp < pit+1, € 4 Cit1
7. end
where the cost functiof’, the pixel vectolp and the coil sensitiv-
ity c are related by

O W

F = HA71/2(c—u) 2—|—H(S—ch)Q71/2H2 (11)

oot = [TIT + A" FA 3 TS+ A~ 23] (12)
piy = [Bi'Bi]'Bi'S (13)
where® stands for the Kronecker product and 0 ‘ ‘ ‘ ‘ ‘ ‘

0 5 10 15 20 25 30 35
SNR

S1

: (14) Fig. 1. Signal-to-error-ratio (SER) of the Bayesian, SVD, Coil-
Sne Average, and SoS, along signal-to-noise-ratio (SNR).

_T - —1
T:=(@Q *)®p;, M. =A"2p,
4. NUMERICAL RESULTS
In order to compare the performance of the above four algorithms,
we assume for simplicity that the pixetsin each column of;,

have the same SNR

sk =cr(p+er) (15)

wheree;, is the zero-mean, independent Gaussian noise with the
same covariance matrix for the different coils.

Exzample 1 :The MRI signals detected by four coils with (2) half moon cylinder (b) Photograph of phased
known varied coil sensitivities in a local region are simulated. The phantom. array coil, transmit coil,
signal-to-error-ratio (SER) and signal-to-noise-ratio (SNR) are de- and cabling.
fined as
E T . . . . .
SER 2 10log,, _ [PTPJ (16) Fig. 2. Phantom image and its experimental devices.
El(p—p)"(p—p)]
E T
SNR £ 10log, [52 Pl a7 SoS with SNR at 0dB and 15dB, respectively. It is because of the

e

prior information of coil sensitivity, the recursive approach and the
where p and p denote the true pixel sequence and the estimatedgood initial estimate that the Bayesian algorithm is promising.
one with||p|| = 1 and||p|| = 1, ande? denotes the identical Example 2 :Forreal data, the signal model in (4) is jus-
noise variance in each coil. By using simulated data we can con-tified by the experimental phantom data in Fig. 2(a) (only one
struct a fully controlled experiment. Fig. 1 shows the SER against coil is presented due to the space limitation). It consists of a
the SNR for the four algorithms in this specified region. SoS has cat spinal cord in one pipe and another oil-filled pipe for refer-
relatively worse SER compared to the other three because it in-ence, both inside a water-filled cylinder. The data is collected by a
troduces positive bias to the estimated pixels. The SVD method four-coil phased array (TR=1000ms, TE=15ms, FOV=18cm,

has a gain of 7 dB on SER compared to SoS when SNR is 10dB.matrix=256x128, slice thickness=2mm,sweep width=26khz, 1
However, SVD is worse than SoS when the SNR is less than 4dB.average) shown in Fig. 2(b) [11]. Fig. 3 shows the histogram of
It shows thatp is sensitive to the noise interference. The Coil- the ratio of the maximum singular value to the mean of the smaller
Average algorithm has a general 12dB SER gain beyond SoS, bethree for the phantom data. In noise-free environment, all ratio val-
cause average itself means a gain of SER. In Bayesian Reconstruddes should be infinite. In the real phantom data case, most ratios
tion algorithm, we choose the SoS solution as the initial pixel esti- range from 30 to 120 showing that the singularity assumption of
matep and the coil sensitivity estimatein the firstiteration asthe  the signal matrixS is well satisfied within reasonable numerical
p and the identity matrix ad. It demonstrates the highest SER accuracy.

among the four algorithms. The SER is 7dB and 15dB higher than =~ Exzample 3 : We also use our algorithms on data from a
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Fig. 3. Histogram of singular value ratio for phantom data.

(a) Coil 1 (b) Coil 2

(c) Coil 3

(d) Coil 4

Fig. 4. Vivo sagittalimages of a cat spinal cord from four coils.

(CY (b) (© (d

Fig. 5. Reconstruction images of cat spinal cord by methods of (a)
Bayesian, (b) SVD, (c) Coil-Average and (d) SoS.
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