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ABSTRACT indeed, we demonstrate that the KGV can also be thought of as

a (looser) upper bound on the same Parzen window estimate. An
important advantage of the derivation described herein, however,
is that it addresses the behaviour of the contrast functions for finite
kernel sizes, rather than relying on a limiting argument in which

We introduce a new contrast function, the kernel mutual informa-
tion (KMI), to measure the degree of independence of continuous
random variables. This contrast function provides an approximate

upper bound on the mutual information, as measured near inde-t e kernel size approaches zero, as in [3]. Our approach thus al-

_pendenc_e, and is based_ ona kernel density gstimate of the_ MUtUglvs us to apply well established methods for selecting kernel size
information between a discretised approximation of the continuous ¢, fnction of the number of observations: see for instance [14]
random variables. We show that Bach and Jordan’s kernel gener- | "o tion 2. we introduce the ICA probllem and describe our.
alisec_i varia_mce (KGV.) is also an upper bound on the same ke.melterminology. Wé then introduce the KC and K,CC in Section 3
density estimate, but is looser. Finally, we suggest that the addltlonanCI derive the KMI and KGV in Section 4. Finally, we show in‘

of a regula_rising term in the K.GV causes itto a_lppr_oach the KM, Section 5 that the performance of the KMI, when used in ICA, is
which motivates the introduction of this regularisation. competitive with that of the KGV, and that both the KMI and KGV
1. INTRODUCTION outperform many traditional ICA algorithms.

. . . 2. ICA: PROBLEM STATEMENT
The problem of separating mixtures of signals, so as to recover

the original signals prior to mixing, is a much studied challenge \ye pegin by introducing the ICA problem.The discussion draws
in signal processing. Methods of solution generally depend on theq, the numerous existing surveys of ICA and related methods: see
nature of the signals, and the manner in which they are mixed; Nty instance [10, 4]. Suppose we have a random vettdrdi-
particular, a criterion known as thentrast function is required to mensionN, with independent identically distributed (i.i.d.) com-

determine when the demixing is successful. We assume here thahonents (we use the sans serif to indicate random variables);
the original signals are generated i.i.d. according to some unknown

probability distributions, and are combined in a scalar mixing pro- N

cess: demixing is then achieved by ensuring that the recovered f:(5) = Hfsi (si),
signals are statistically independent. This is the frameworkrfor i=1

stantaneous ICAL, and has been used successfully in a wide variety
of problems: for instance, the separation of linearly mixed audio
signals, and the recovery of evoked potentials from EEG signals
(see [10, 4], and references therein). = Az 2.1)

A measure of statistical independence between two random ’ '

variables is thenutual information [5], which for random vectors  \yhereA is anN x N matrisé. Clearly, the components @will

X,y is zero if and only if the random vectors are independent. This not pe independent unlegs = PS, whereP is a permutation
may also be interpreted as the KL divergerer, (fxy||fxfy) be- matrix andsS is a diagonal scaling matrix. Our goal is to find an
tween the joint densityz y and the product of the marginal den- approximationV to theinverse of the matri® A, givenm i.i.d.
sitiesfyfy, the latter quantity g_eneralises readily to distributions samples fronf;, and usingonly the model (2.1) and the fact that

of more than two random variables. We therefore propose two the ynmixed components are independent. The determination of
quantities, based on the mutual information, that may be used asp can only be made within certain identifiability constraints, how-
contrast functions in ICA. The first, which we call the kernel co- ever; in particular, no more than one source can be Gaussian.
variance (KC), can be shown to be zero if and only if the random Assume we haven observations := (i1, ... ,%y). Our first
variables are independent. The second function, the kernel mutuagtep in computingV’ is to subtract the mean dffrom eacht,
information (KMI), is an upper bound on the Parzen window esti- 5 =
mate of the mutual information, and is also zero if and only if the
random variables are independent. Both functions bear a strong 2This corresponds to the number of sources being equal to the num-
resemblance to the kernel canonical correlation (KCC) and kernelber of sensors. In fact, it is possible to recover (2.1) when the number of

generalised variance (KGV) introduced by Bach and Jordan [3]: sources is less than the number of sensors by a change of basis, although
the presence of noise makes this more difficult.

1We shall in future refer to this problem simply as ICA. 3Up to permutation and scaling.

wheres; € R. We do not observé however: instead, we observe
the random vectat, such that

and to whiten it = Qf, such that the new observatiohfiave
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a unit covariance matrix. Our estimate of the demixing matrix Theorem 1 (Kernel covariance and independence). J = 0 if

then become¥ := WQ, whereW is an orthogonal matrix; our

estimate ofs is Z := Wi. Although the determination oW

remains difficult, there are onlyv (N — 1) degrees of freedom
involved in this problem, as opposed to tNé degrees of freedom

present in the estimation &f.

3. THE KERNEL COVARIANCE AND CORRELATION

and only if x, y are independent.

Finally, we introduce the canonical correlation, as described in
[7, 3, 11]; the final reference is a particularly insightful investiga-
tion of the canonical correlation in high dimensional spaces (such
as RKHSs). We first define the canonical correlation in the gen-
eral case, without reference to its interpretation witan Fy are
RKHSs. We would like to find vectora;, 8, onto whichx and

We now describe the kernel covariance, which is proposed as ay respectively project, such that tiserrelation p; between these

measure of statistical independence of the random vetandy,

defined onY := R"* and) := R"*. The generalisation to more

than two vectors is addressed in [8]. We define the vest@isdy
and the random vectossandy in the feature spaceBy andFy,
and the mappingg, : X — Fx and¢, : ¥ — Fy such that

xi=¢, (@) and y:=g, (7).

projections is a stationary point with respectitg 3,. The canon-
ical correlationsp;, are thus given by

pi = ol CoyB; . (3.4)
V(@] Coaen)) (BT C,,8)

WhenFx andFy are RKHSs, then care must be taken when find-

The feature spaces may be the reproducing kernel Hilbert space@g empirical estimates of the canonical correlates, to ensure that

(and subspaces d@§°) associated with particular kernels, which

represent the inner produtisn Fx andFy. We define

Coy = Exy(x—E ()Y -E()T), G
c=la el 62

whereC,, andC,, are given by analogy. We obserwe i.i.d.
samples of dataz = ((x1,y1), ..., (Xm,ym)), Wherex; € Fx
andy; € Fy.

We may also define th&ram matrices Kﬁ,’,fﬁn Kﬁf{ﬂn of in-

these estimates are data dependent. This may be done by con-
fining au;, 3; to subspaces of the space spanned by the sample in
Fx,Fy, as in Kuss [11], or by regularising, as in [3]; in the lat-

ter case, the largest kernel canonical correlation may be used as a
contrast function for ICA.

4. UPPER BOUNDSON MUTUAL INFORMATION

We now apply both these definitions to derive an approximation of
the mutual information between random variablesdy, defined
on the respective bounded intervalsand) on R. Full details
of the proofs, and a generalisation to more than two random vari-

ner products between the mapped observations above, in the cas2P!es, may be found in [8]. We begin by introducing the Gaussian
whereFx andF are reproducing kernel Hilbert spaces (RKHSs) Mutual information, and its relation with the canonical correlation.

with associated kernels (;,#;) = x; x; = (K'&),);; and
k(@@,3) = yiy; = (K¥.)i,;. According to [13], Gram
matrices for the variables centréad feature space areﬁ&”{}n =

HK),H,KY), .= HKY), H, whereH = I,, — m ‘1,1,

and1,, is anm x 1 vector of ones.

We can now introduce the kernel covariance (KC). In the pop-

ulation case, the KC is

J= sup  [Eey[f(X)9(¥)] - Ey[f(K)] Ey[9(D]l,
fE€Fx,9€Fy

whereFx := {f € Fx : ||fllx, <1}, andFy is analogous.

An empirical estimaté(z) may be obtained from the finite sample

z, using the representer theorem (Schélket . [12]) to replace

.f (f) = Zczk (f, _‘[) = ZC[XTXI, (3.3)
=1 =1

with a similar replacement fgr (7); it follows thatJ(z) := max; ;,
where~; are the eigenvalues of

~ —1 ~ ~
Kih 0 0 Kioh K,
o K, KRG, 0

If Xa, Yo are Gaussian random variablesRifr , RPv respectively,
then according to [3] the mutual information between them can be
written

min(p1 Dy )

o o 1
I(Xaiya) = —7 log II

i=1

(1-p7) |, (4.1)

where thep; are given by the canonical correlations in (3.4).
Next, consider a grid of size, x p, over X and) respec-
tively. Let the indices, j denote the poinfg;,r;) € X x Y on
this grid, and lelg == (q1,-..,4p,) .7 := (r1,...,7p,) be the
grid coordinates. The spacing between points alongrthedy
axes is respectivel, andA,. We define two multinomial ran-
dom variables, y with a distributionPy ; (4, j) over the grid (we
write the complete, x p, matrix of such probabilities aB),

where
o Gi+Az  pri+Ay
Pgi)= [ [ b ey,
qi Tj

Thus Py 5 (i, j) is a discretisation oP,,. We denote ap. the
vector for which(p.), = Px(i), with a similarp,, definition. We

may always writePs ; (i, j) = Px (i) Py (§) (1 + ¢;,;) for an ap-

We now describe the link between the kernel covariance and inde-Propriate choice of; ;. If €; ; is small, we approximate

pendence; details are given in [8].

4To be a kernel associated with a RKHS(%;, Z;) must satisfy the

Mercer conditions [1]; these hold for Gaussian and Laplace kernels, among

. 1 Pz Py ) <
I%y) =5 SN P (i) Py () €,

i=1 j=1

(4.2)

(many) others. Note also that the argument of the kernel specifies whether

the kernel pertains t&Fx or Fy, although these kernels are identical in

the present study.

It is well known (see [5]) thaf (x,y) represents the upper bound
onI (x;y) as the discretisation becomes infinitely fine.
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We next define an equivalent multidimensional representation wherev,, := minjci1..p,1 > 1y k (%1, ¢;), we replace the ma-

X,y of %,y in the previous section, whekee R** andy € R?v, trix term in D, by the left hand expression in (4.5), yielding a new
such that = i is equivalent tqz); = 1 and(Z); . jz: = 0. Using quantity|3;| > |p:; it follows that replacings; with 5; yields an
LT . T upper bound on (4.1). In fac§; is simply the kernel covariance,

Exy (xy ) =Pz, E(X)=ps, E (XX ) =D., but with the additional requirement that the functighg be pro-
jected in their respective feature spaces onto the basis spanned by
the columns of the gridy, », as well as an added scaling factor

C.y =P,y — pxp;,r, C.z =D, — pap. . (4.3) Uz. We use thié insight to replaeje in (4.1) Withman appropriately
_ _ _ scaledy;, and v, With v := minjeqi my >0 k (21, 25), t0
We define the Gaussian random variatilesyc to have the same  obtain the empiricakernel mutual information (KMI),
covariance structure &y, and with mutual information given by

whereD, = diag (p.), itis possible to define covariances

(4.1). The mutual information for this Gaussian case may then be M(z) = _1 log (‘1 — (Vary) Kﬁggﬂf{g;‘) 7 (4.6)
approximated by (4.2) near independence; see [3, 8]. 2
Given that we are not provided with the distributiBg; (i, 5), which is also an upper bound on (4.1). It follows from Theorem

but rather a finite sample of sizem, we make use of a kernel den- 1 that the random variablesy are independent if and only if the

sity estimate of the mutual information for the discretised random population KMI satisfiesM = 0.

variables. A detailed discussion of the properties and behaviour of ~ Bach and Jordan [3] propose a related quantity as a contrast

such estimates may be found in [14], and previous work on their function for ICA: the kernel generalised variance (KGV). In fact,

application to the computation of entropies in [9]. The kernel den- the latter quantity may also be derived by finding an upper bound

sity (Parzen window) estimates fyfandf, , are on (4.1): this is a different approach to the proof in [3], which uses
a limit as the kernel becomes infinitely small. Using

fi(z) = k(zi,x),

T T
1 TR (K67 e < el aiag (K55 (62) 1, ) e

k(z, @)k (y,y). we replace the right hand term in the above with the left hand term
in the denominator of (4.4) to get a set of kernel canonical correla-
tionsp; > pi, restricted to the basis spanned by the grid. The mu-
tual information computed using the unrestricted kernel canonical
correlationsp; is therefore an upper bound on (4.1). The contrast

)
3=
NgE

l

~

fx,y (ﬂ:, y) =

3=
NE

l

Il
=

The kernels must be non-negative and continuous, with unit inte-
gral w.r.t. to its two arguments. We require approximations to the
covariance matrices in the Gaussian mutual information, as de'function thus derived is never used in practice, since it is infinite;

scrlb_edAln (4'3)_‘ We therefore ‘?'ef'“e the vectﬁgs_py, and the in other words, the approximation we made above is too loose. If
matrix P, using the expectations computed with these kernel \ya instead make the replacement

expressions;
m

S TN s R B (25T) A e Daes = & (6:KE) (K(I))T—{—@gu K@ )&
Exy (Xy ):Pllyy Ex(X):sz Ex (XX ):Dr A‘% P ¢ pm pm e v

wheref; > 0,62 > 0, andf; + 62 < 1, we recover an expression

(@) o of i i ;
Let K;,, be the matrix of inner products ifix between the grid which, for correct choice o6y, 6, yields theregularised KGV

ponn;s i;‘dasgmpl‘; %Kﬁ?ﬂedﬁfls?esdut?gc ﬁ”talsf’gg’é”;’;g \?viseuttzger proposed in [3]. We therefore expect the performance of both the
{)ﬁe grid @ or }D)yor the éampleaﬁ or y) is upsedpin the rows of KGV and KMl to be very similar when used for ICA: this is indeed

this matrix, and the second subscript whether the grid or sample isthe case in our experimental results. _
used in the columns. By analogy, we may also define the matrices ~ We now briefly address the gen_erallsatlon of the kernel covari-
KI()”;),K(I) KI(,%),KS{%I. In the limit whereA,, A, are small anceJ to the case ofV random variables; on bounded subsets

(and thuwéini,y implicationp, > m, p, > m, o > A,, and X; C R, by analogy with derivation of [3]; this can be used to
o > A,, whereo defines the kernel size), we make the approxi- measure the pairwise independence of our estiiatethe inde-

mations pendent componengs The KC is the largest eigenvalue of
= Az A T 1 T ~ ~
Poy—pop) = =t ({0 (Kk0) - Sk (kW) ). ([ RR, }
R N . KK’ — L ci =\ (diag(K)ci) ,
D _ 2z 4 (z) _ Pz (z) (z) KyK
D, = —d Kyl ) = —d Kom (Kpm 1 . NAON
m 13%( P ) T 1ag ( P - ( p. ) pm) . @.7)
The kernel density approximation to the discretised mutual infor- wheree; = (c;1,...,cin)T andK = [Ki,Ks,...Ky]T. To
mation is then found by replacing tpein (4.1) with reduce computational cost, we use a reduced rank approximation

o (13z _ f)zf)T) a of IN{]-, via an incomPIete Cholesky factorization with appropriate
- _ Y v . (4.4) pivoting [6] (that is K; ~ Z;Z; with Z; € R™** andd < m).
¢TD.¢; d D,d: We setd; = [¢;1Z1,...,¢; yZn] ", and rewrite (4.7) as

di = \di, (4.8)
ZNZN

5Specifically, the parameter denoting the amount of regularisation in [3]
can be writterk = 6214 /01, although we must be careful in our choice
of 61, 65 to ensure we still have an upper bound; see [8] for details.

ally prohibitive to evaluate the Gram matrices on a sufficiently fine

This cannot easily be computed, however, since it is computation- ( T+ [ vAVA
grid. Noting that

.
ae) K¢ < & diag (K;Q (K;“;g) 1p> &, (45)
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whereZ = [Z1,Z,...Zy]". This transformation takes care of
the nullspace inherent i#; Z;r and reduces the eigenproblem to
dN dimension8. Finally, the KMI for more than two variables is

Table 1.
signals; comparison with fast ICA, Jade, and extended Infomax.
The best result is in boldface.

lllustration of the demixing ofN randomly chosen

49 |

M(z) = —% log (H l/z)\i)

wherev, = min; v,; (in our experiments, we simply set =

1/m; the performance remained satisfactory).

5. EXPERIMENTAL RESULTS

We now apply the KGV and KMI to the problem of ICA. Since the
main purpose is to compare the performance with that reported in

[3], we use identical settings and data. The mixing ma&ixwas
chosen randomly, with condition nhumber betwegeand2. We

used the Gaussian RBF kernk{z, z') = exp(— 52z [l — ='|*),
with 0> = 1 andx = 2 x 1072 for the KGV, except in the case

of the 250 point sample, wher€ = 1 andx = 2 x 10~ 2. We
only useds® = 1 for the KMI. The orthogonal componeiWV

N | m [ Rep] fiCA [Jade | Imax | KGV | KMI |
2 250 | 100Q 11.6+| 10.6+ | 46.7+ | 5.4+ | 6.2+
0.4 0.4 0.9 0.2 0.2
2 1000 1000 6.2+ | 4.8+ | 109+ | 2.5+ | 2.8 %
0.2 0.2 0.6 0.1 0.1
4 | 1000 100 | 6.0+ | 5.5+ | 10.7+| 3.5+ | 3.7+
0.4 0.4 0.9 04 0.7
4 | 4000 100 | 3.3+ | 2.7+ | 6.2+ | 1.4+ | 1.4+
0.2 0.1 0.7 0.1 0.05
8 2000 50 404+ | 39+ | 824+ | 3.7+ | 2.9+
0.2 0.3 0.8 0.9 0.4
8 | 4000 50 30+ | 254+ | 56+ | 1.6+ | 1.3+
0.3 0.1 0.7 0.1 0.04
16| 4000 28 3.1+ | 3.3+ | 11.1+£| 3.1+ | 2.2+
0.2 0.2 1.1 0.9 0.3

of the demixing matrix was found using gradient descent on the
manifold of orthogonal matrices; see [3]. In order to measure the
distance between the trud (') and approximateWQ) demix-

ing matrices, we used thismari divergence [4]. This metric is in

the interval0, 100], is equal to zero if and only iA~', WQ are
piecewise identical, and is invariant to permutation and scaling of
AT WQ.

Our experiment consisted in de-mixing data drawn indepen-
dently from2 — 16 distributions, chosen at random with replace-
ment from 18 possible options; these include signals with both
positive and negative kurtosis, and are described in detail in [3, 8].
Table 1 summarises our results; the KMI seems somewhat better
in the case of largem and IV, although further refinement of the
parameter choices in both methods might be possible. Further ex-
periments are described in [8], most notably addressing the prob-
lem of recovering signals in the presence of noise, and in the case
of low kurtosis. In these cases, the KMI and KGV again yield the
best observed performance.

6. CONCLUSIONS

We have presented a novel derivation of several kernel based con-
trast functions for ICA (the KMI, KGV, and related), which yields
useful insight both into the problem of model selection, and the

function of the regularising term in these contrasts. The KMI and [11]

KGV are comparable in performance, and substantially outper-

form several alternative ICA approaches. Further work will focus [12]

on the application of kernel based contrasts to convolutive mix-
ing, and to the recovery of random processes that are not i.i.d.; an
application to graphical model estimation is given in [2].

(13]

7. REFERENCES
[1] N. Aronszajn. Theory of reproducing kernel&.ansactions
of the American Mathematical Society, 68:337 — 404, 1950.

[2] F.Bach and M. Jordan. Learning graphical models with mer-
cer kernels. INNIPS 2002 (to appear).

[3] F.Bach and M. Jordan. Kernel independent component anal-
ysis. JMLR, (3):1-48, 2002.

6Note that there is no reason why ) should have the same dimen-
sionality: it may in fact be more computationally efficient in some circum-
stances to use different decompositions for diffeegnt

(10]

(14]

[4] A. Cichocki and S.-l. AmariAdaptive Blind Sgnal and Im-
age Processing. John Wiley and Sons, New York, 2002.

[5] T. M. Cover and J. A. Thomaglements of Information The-
ory. John Wiley and Sons, New York, 1991.

[6] S.Fine and K. Scheinberg. Efficient SVM training using low-
rank kernel representation. Technical report, IBM Watson
Research Center, New York, 2000.

M. Greenacre.Theory and Applications of Correspondence
Analysis. Academic Press, London, 1984.

[8] A. Gretton, R. Herbrich, and A. Smolalhe Kernel Mutual
Information. Max Planck Institute for Biological Cybernet-
ics, 2002. Forthcoming (draft available on request).

(7]

[9] L. Gyédrfi and E. van der Meulen. An entropy estimate based
on a kernel density estimatiorColloquia Mathematica So-
cietatis Janos Bolyai, 57: Limit Theorems in Probability and

Statistics:229-240.

A. Hyvérinen, J. Karhunen, and E. Ojandependent Com-
ponent Analysis. John Wiley and Sons, 2001.

M. Kuss. Kernel multivariate analysis. Master’s thesis, Tech-
nical University of Berlin, 2001.

B. Schdlkopf, R. Herbrich, and A. Smola. A generalised rep-
resenter theorem. IRroceedings of the Annual Conference
on Computational Learning Theory, 2001.

B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear com-
ponent analysis as a kernel eigenvalue probldearal Com-
putation, 10:1299-1319.

B. Silverman. Density Estimation for Satistics and Data
Analysis. Chapman and Hall, New York, 1986.

IV - 883




