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ABSTRACT

We present a machine learning technique aimed at detecting abrupt
changes in a sequence of vectors. Our algorithm requires a Mercer
kernel together with the corresponding feature space. A stationar-
ity index is designed in the feature space, and consists of compar-
ing two circles corresponding to two�-SV novelty detectors via a
Fisher-like ratio. An abrupt change corresponds to a large distance
between the circles centers (w.r.t. their radii). We show that the
index can be computed in the input space, and simulation results
show its efficiency in front of real data.

1. INTRODUCTION

Abrupt changes detection in signals is a much studied problem,
and various approaches have been proposed. Some rely on the
knowledge of a signal statistical model; Generalized Likelihood
Ratio (GLR) techniques [1] and Bayes detection theory have ex-
cellent performance. However, in some applications, it may be
difficult to design an accurate and tractable statistical model, and
model-free approaches need then be considered. In this paper, we
propose a model-free, machine learning based online algorithm for
abrupt changes detection in signals.

Our algorithm is two-step. First, informative descriptors (or
vectors) localised in time, denoted���, are extracted online from
the signal. These can be cepstral coefficients computed on a slid-
ing window, short-time Fourier transforms (STFTs), etc. Second,
we define a kernel-based online stationarity index���� computed
in the descriptors space (or input space, denoted� ), and geomet-
rically defined in a feature space� induced by a Mercer kernel
���� ��1. Roughly,���� is computed as follows. A kernel���� �� is
selected. At time�, a first�-Support Vector (SV) novelty detector
is trained over the�� last descriptors�� � �������

� � � � � ������,
yielding a decision region�� in � . �� is such that a vector��
is considered similar to�� iff �� � ��. Next, a second�-SV
novelty detector is trained over the�� future descriptors�� �
����� � � � � ���������, yielding��. The regions�� and�� are rep-
resentative of the probability density functions (pdfs) which gen-
erated the sets�� and��. Thus, comparing the geometries and
locations of�� and�� is a robust way to compare�� and��.
We show that this can be easily done in the feature space, and that
it can be computed in the input space using���� ��.

The remainder of this paper is organized as follows. In Sec-
tion 2, we recall basic elements about�-SV novelty detection. In

1The relation between Mercer kernels and feature spaces is exposed in,
e.g., [2].

Section 3, our algorithm is described. In particular, we explain
how the stationarity index is defined in the feature space, and com-
puted in the input space. Simulation results are presented in Sec-
tion 4, and some conclusions and perspectives are given in Sec-
tion 5.

2. �-SV NOVELTY DETECTION

We assume a set of� training points� � ����� � � � � ���� is avail-
able in the input space� . We define a learning algorithm

� � ������
� �	 


����� 	 	 	 � ���� 
�	 ����

where
 is ahypothesis space of indicator functions�� such that
������ � � if �� � � and 0 otherwise for any subsets� in � .
Next, we define a mapping� from� to a so-calledfeature space
� :

� � � �	 �
�� 
�	 � � �����

We assume� is endowed with a dot product�������, and restrict

 to indicator functions on decision regions of the form� � �� �

����� � �� where the decision function is defined as


� � � �	 �

�� 
�	 
����� � ����� � �
(1)

In eq. (1),� is a linear combination of mapped training points,

� �
��
���


���� with
� � � �� � �� 	 	 	 ��	 (2)

The parameters� and�, that completely define���� for a given
training set�, are determined by solving

��	
�����

�
�



���� �

�

��

��
���

�� � �

subject to������ � �� ��� �� � �	

(3)

where� � � � �. In the dual formulation, we obtain directly
�,
� � �� 	 	 	 �� by minimizing (w.r.t.
�’s and�)

� � �
�
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���
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���
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� �
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��
for � � �� 	 	 	 �� and
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���


� � �	
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All training points��� for which
������ � � are calledsupport
vectors (SVs); these are the only points for which SV algorithms
yield 
� �� � in eq. (2), thus the SVs alone determine
����. SVs
are divided into two sets:margin SVs, for which 
������ � �,
andnon-margin SVs, for which 
������ � �. It is proved in [3]
that� is an upper bound on the fraction of non-margin SVs, and
a lower bound on the fraction of support vectors; in addition,� is
asymptotically equal to both the fraction of SVs and the fraction
of non-margin SVs with probability 1, under mild conditions on
the probability distribution generating the data.

Finally, we note that we need never compute the mapping
�����: rather, by eq. (2), it follows that������ can be computed
using only the dot product function,������ ���� � �x�� x��. A ker-
nel� represents a dot product in some feature space if it fulfills the
Mercer conditions [4]. These conditions are satisfied for a wide
range of kernels, including Gaussian radial basis functions,

� ����� ���� � �	


�
�

�


��
���� � ����

�

�
	 (4)

3. ONLINE ABRUPT CHANGES DETECTION
ALGORITHM

In this section, we introduce our main result, namely an algorithm
aimed at detecting online abrupt changes in the distribution of vec-
tors ��� observed sequentially in time. The sequence��� can be
produced directly by a system. In signal processing applications,
it typically results from a preprocessing step aimed at extracting
descriptors from a signal at each time instant�.

3.1. Algorithm description

Consider at time� two subsets�� � �������
� � � � � ������ and

�� � ����� � � � � ��������� of size�� and��. Each of these
subsets are used to train independently�-SV novelty detectors,
yielding parameters��� �� and��� ��, and decision regions��

and��. The idea underlying our abrupt changes detector is that a
sudden change at time� in the distribution of vectors��� may result
in different locations/geometries of�� and�� (as depicted in the
input space in fig. 2): in practice, at each time�, we want to build
an index���� that reflects the dissimilarity between�� and�� via
a measure of the dissimilarity between�� and��. (The computa-
tion of ���� for a given� is described in the next subsection). Once
���� is computed, the subsets�� and�� are updated at time���.
The corresponding parameters��� �� and��� �� are also updated
using the online�-SV novelty detection technique presented in [5].
This online technique avoids computing the�-SV novelty detec-
tion parameters�� � from scratch at each time�. Abrupt changes
are finally detected whenever the index���� peaks or is over a
threshold� (this is similar to most abrupt changes detection tech-
niques). In the next subsection, we propose an original stationarity
index induced by geometrical considerations in the feature space.

3.2. Geometry in the feature space

Consider a normalized Mercer kernel such that����� ��� � �� ���.
The mapped training vectors�� � ������ are located on the hy-
persphere� centered at the origin of� (denoted�), with radius�.
Given a training set, say��, the optimisation problem given eq. (3)
admits the following geometrical interpretation. The parameters
��� �� define a hyperplane�� in � , orthogonal to�� and dis-
tant of��������� from � (see fig. 1).�� separates the mapped

training vectors from�. In � , the mapped region�� is the por-
tion of � that is delimited by��, and that is located opposite�.
Its boundary is a hypercircle�� in � . The hypersphere� radius
being one,�� is entirely defined by��� ��. Similarly, for��, solv-
ing eq. (3) yields an hyperplane�� and a hypercircle�� defined
by��� ��.

In the feature space, the shapes of the mapped regions�� and
�� are simple (their boundaries are hypercircles�� and��). They
can be fully compared from their center locations and radii, which
can be computed from��� �� and��� ��.

A simple way to compare�� and�� (i.e.,�� and��), and to
build ����, consists of considering an interclass/intraclass ratio in
� , such as

���� �
distance between circle centers

radius of�� � radius of��

If �� � ��, which means that both training sets are located
around the same position, then���� � �. This is what we expect
in such situations. Let now assume�� �� ��. Then, there exists
at least at least one triplet������� �� such that:

���
��

�� � � ���

�� � � ���

� is a circle of radius� with center�
��, ��, ��, and�� are all located on�	

(5)

where�� (respectively��) are the points located at the intersection
between the line passing through� and oriented along�� (respec-
tively ��) and�, see fig. 1.

�� and�� are the (geometrical) centers of the region occupied
by the feature data, and�� and�� possess properties similar to
mapped margin support vectors as they lie on the separating hy-
perplane. Yet all the 4 points possibly do not have pre-images in
the input space. However,���� can be expressed in terms of dot
products in the feature space, i.e., as kernels in the input space. We
note that���� can be written

���� �
�

(

�����

�

(

������ �

(

�����
(6)

where (

	 denotes the circle arc. As� is of radius�, the circle arc
is also the circle angle between�� and��, and

(

���� � ������ � �����
�
� ����� �

������	������

�
(7)

Using eq. (2), we have

� ����� �

������	������
�

�
���
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���

��
��������� ����������

�
���


��
��������� ���������

where
�� (resp.
��) correspond to�� (resp.��) and���� (resp.
����). Using similar computations, we can express the circle arc
between�� and�� as

(

���� � �����
	 ��
�
�
���


��
��������� ���������



We obtain a similar result for

(

����. This shows that���� is a
function that can be computed in� using���� �� only.

Remark– If we use a positive kernel������ ���� � � ���� ��, all
mapped data lie in the same orthant, and the angle������ �� � �� 
�

IV - 873

➡ ➡



��
������

��
������

��

�

��

��

��

� � �

�

����

��

��

Fig. 1. In the feature space� , the training data are mapped on
a hypersphere� with radius 1 and center�. The �-SV novelty
detector related to�� (resp.��) yields a hypercircle�� (resp.��)
in the hyperplane�� (resp.��).

cannot exceed��
. The angle������ is likely to be lower than
��
, especially if there is no abrupt change. In this case, the cosine
being bijective on��� ��
�, we can consider the modified index

����� �
����

(

�����

����

(

����� � ����

(

�����
�

� ����������� �

��������� � ���������
(8)

3.3. Discussion

From eq. 6, we see that���� is indeed a Fisher-like ratio. Hence,
abrupt changes will be detected whenever they correspond to an
abrupt change of means (due to the term

(

����) w.r.t. to the scale of
the data (given by

(
���� and

(

����). Note that���� is robust to out-
liers��� which are not due to abrupt changes, because�-SV novelty
detection rejects such outliers. Though based on the same funda-
mentals as the Rayleigh coefficient used in Kernel Fisher Discrim-
inant (KFD) analysis [2], our coefficient���� is different: in KFD,
the Rayleigh coefficient is maximized w.r.t. the projection direc-
tion� whereas in our technique� is yielded by the�-SV novelty
detectors.

Another approach based on SV classification could be consid-
ered, where�� and�� are seen as training sets of two different
classes. One could train a SVM classifier using these two sets,
and consider the margin as the stationarity index. However, this
approach suffers from several drawbacks. First, when no abrupt
change occurs,�� and�� are mixed; thus designing a classifier is
somewhat artificial, and meaningless. Second, vectors considered
as outliers in�-SV classification are different from those consid-
ered as outliers in the two�-SV novelty detectors. The way the
former are selected in one set (e.g.,��) is governed by the other
set (e.g.,��), and not by their intrisic behavior w.r.t. the process
���. Third, the computational burden is higher with SV classifica-
tion because training with�� � �� vectors (in�� � ��) costs
more than training independently with�� and�� vectors.

Finally, the approach in [6] addresses a related but different
problem, namely early abnormality detection (where no detection
delay is tolerated). In [6], a candidate��� is tested with respect to
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Fig. 2. In the input space, evolution of the separating curves
yielded by the two�-SV novelty detectors when the mean of one
of the two subsets change (top left, top right, bottom left, bottom
right). Two surfaces with a small overlap correspond to a change.

the novelty detector trained on the set������� 			� ������. A sta-
tionarity index is built with the output of the detector:

����� �� ������ ������ � ������ (9)

Simulations on music signals where��� were STFTs yielded good
results, though abnormality early detection was not adequate in
the context of music segmentation (where detection delay can be
accepted).

4. SIMULATIONS

In this section, we compare our algorithm with two standard signal
processing methods aimed at detecting abrupt changes, the Gener-
alized Likelihood Ratio (GLR, see e.g. [1] for a detailed presen-
tation) and a technique based on distance between time-frequency
subimages [7]. As opposed to GLR, this technique is model-free.
All the three techniques are tested both on artificial and real data.

The set of artificial data is composed of 2000 realisations of
white gaussian noise of length
��� filtered by an order 4 autore-
gressive model whose moduli are equal to�	��, and frequencies
are uniformely drawn between�	�� and�	��. In the first����
signals, the AR parameters have an abrupt change at point 1024,
and the other���� are kept with no change. The three techniques
are tuned as follows. As depicted in the previous sections, our al-
gorithm is fed with two subsets of descriptors extracted from the
smoothed pseudo Wigner-Ville of the input signal (time window of
length
�, and frequency window of length��). Each training vec-
tor is a TFR subimage of width 12, and the training set size is
�.
The support vector parameters are:� � �	� for the RBF gaussian
kernel and� � �	
. The same TFR is used for the distance-based
method, with the TFR subimage width equal to���, and we select
the Kolmogorov distance [7]. Finally, the GLR is given the correct
autoregressive model, with different orders:�, � (correct order),
and�.

For a given input signal, each method yields an index whose
maximum, if higher than a (method-dependent) threshold, corre-
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sponds to an estimated abrupt change time instant. We define false
alarms (FAs) as the detection of a change outside the neighbor-
hood of the true change time instant, and true alarms (TAs) as the
correct detection of an abrupt change inside that neighborhood.
Fig. (3) plots the ROC curves (TAs vs. FAs) for the three meth-
ods. Both GLRs with autoregressive model orders 4 and 6 yield
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm rate

True alarm rate

Fig. 3. ROC curves for the distance-based method (dot), GLR
with a lower order (dash-dot), SVM method (dash), and GLR with
correct or superior orders (solid). Very accurate performances are
yielded by the GLR with correct (and superior order) and the SVM
method.

very accurate results, which was expected as they were given the
correct model. The SVM detector behaves accurately, with e.g. 95
per cent of true positives for 2 per cent of false positives, though
no priors over the analyzed data are given. The TF distance-based
method and the GLR with a lower order yield poor performances.
Similar results can be observed on the histograms of the time in-
stants corresponding to true positives (fig. 4). Note that the SVM

984 1024 1064
0

10

984 1024 1064
0

10

984 1024 1064
0

10

(%) (%)(%)

Fig. 4. Histograms of the estimated change time instant: percent-
age of the detected time instant inside the admissible neighborhood
of the theoretic change time instant (1024) for the distance-based
method (left), the SVM method (middle), and the GLR with cor-
rect order (right).

method gives better results than the TF distance-based technique
though using the same descriptors as an input.

We have also tested our algorithm on music signals, where it
proved to be quite efficient. Figure 5 displays the index obtained
on the same music signal as in [6]. Every change of dynamics is
properly detected (this is confirmed by listening the piece), which
was not the case with the distance-based index (see [6]). Moreover,
our index is much smoother, with abrupt changes corresponding to
sharp peaks, and present high constrast on areas with and without
changes.
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Fig. 5. Music signal (top) and the corresponding SVM abrupt
change detection index (bottom). For a threshold� equal to�	��,
all changes (dashed lines) are correctly detected, with only one
false positive (circled).

5. CONCLUSION

In this paper, we introduced an original kernel technique for detect-
ing abrupt changes in signals. Simulations show its good behavior
w.r.t. other algorithms on synthetic data, and superior performance
on music signals, both in terms of accuracy of the detection and
constrast.
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