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ABSTRACT Section 3, our algorithm is described. In particular, we explain
how the stationarity index is defined in the feature space, and com-

We present a machine learning technique aimed at detecting abrupfieq in the input space. Simulation results are presented in Sec-
changes in a sequence of vectors. Our algorithm requires a Mercefjgn, 4, and some conclusions and perspectives are given in Sec-
kernel together with the corresponding feature space. A stationar+;oy, 5.

ity index is designed in the feature space, and consists of compar-
ing two circles corresponding to twa'SV novelty detectors via a
Fisher-like ratio. An abrupt change corresponds to a large distance
between the circles centers (w.r.t. their radii). We show that the - . - oo .
We assume a set @f training pointse = (#1, - - - , Z,) is avail-

!thdoi;( ifsgfﬁsi:ﬁg?ﬁtﬁgr:;qotfhé;:%l;tt:pace’ and simulation resultsable in the input spac&’. We define a learning algorithm

2. v-SV NOVELTY DETECTION

A Uy xA™ — H
1. INTRODUCTION {Z1,.... %0} — Az)
whereH is ahypothesis space of indicator functiondz such that

(#) = 1if & € R and 0 otherwise for any subse®sin X'
ext, we define a mapping from X to a so-calledeature space

Abrupt changes detection in signals is a much studied problem,
and various approaches have been proposed. Some rely on th
knowledge of a signal statistical model; Generalized Likelihood

Ratio (GLR) techniques [1] and Bayes detection theory have ex-~ - 6 X — F
cellent performance. However, in some applications, it may be i — x=¢@)

difficult to design an accurate and tractable statistical model, and ) . )
model-free approaches need then be considered. In this paper, wé/e assumé” is endowed with a dot produ¢k;, x;), and restrict
propose a model-free, machine learning based online algorithm for* t0 indicator functions on decision regions of the foRn= {x :

abrupt changes detection in signals. =(Z) > 0} where the decision function is defined as

Our algorithm is two-step. First, informative descriptors (or fo i X — R

vectors) localised in time, denotet], are extracted online from o o fuol@) = (x,w) — p
the signal. These can be cepstral coefficients computed on a slid- * ’

ing window, short-time Fourier transforms (STFTs), etc. Second, In eq. (1),w is a linear combination of mapped training points,
we define a kernel-based online stationarity indéx computed

in the descriptors space (or input space, dendf¢dand geomet-
rically defined in a feature spacg induced by a Mercer kernel

1)

W:Zaixi, witha; >0 Vi=1,...,m. 2

k(-,-)*. Roughly,I(t) is computed as follows. A kernél(-,-) is i=1

selected. At time, a firstv-Support Vector (SV) novelty detector  The parameterss andp, that completely defingl(z) for a given
is trained over then, last descriptoree: = (ZFi—m,, -+ , Fi-1), training setz, are determined by solving

yielding a decision regiorR, in X'. R, is such that a vectar

is considered similar taz; iff £ € R;. Next, a second-SV 1 9 1 &

novelty detector is trained over the, future descriptorse, = Y lIwll” - om Zﬁi +p 3)
(Z¢,- -, Zt4mq—1), yieldingR.. The regionsk; andR, are rep- i=1

resentative of the probability density functions (pdfs) which gen- subject to{w, xi) 2 p— &, & 2 0.

erated the setg, andx.. Thus, comparing the geometries and where( < v < 1. In the dual formulation, we obtain directly;,
locations of R; and R is a robust way to compare; andx:. i =1,...,m by minimizing (w.r.t.c;’s andp)
We show that this can be easily done in the feature space, and that

it can be computed in the input space usirg -). 1 X
The remainder of this paper is organized as follows. In Sec- W= +3 Z Zo‘io‘i (xi, ;)
tion 2, we recall basic elements abauSV novelty detection. In i=1j=1
m
1The relation between Mercer kernels and feature spaces is exposed in, subject to) < a; < L fori=1,...,m and Z a; = 1.
e.g., [2]. vm im1
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All training pointsz; for which £ (#;) < 0 are calledsupport training vectors fron0. In F, the mapped regio®, is the por-
vectors (SVs); these are the only points for which SV algorithms tion of S that is delimited by}, and that is located opposite
yield a; # 0in eq. (2), thus the SVs alone determifig-). SVs Its boundary is a hypercirclé; in F. The hyperspheré& radius
are divided into two setsmargin SVs, for which f.(Z;) = 0, being one(; is entirely defined by, p1. Similarly, forz., solv-
and non-margin SVs, for which f.(Z;) < 0. It is proved in [3] ing eg. (3) yields an hyperplanés and a hypercircl€, defined
thatv is an upper bound on the fraction of non-margin SVs, and by ws, p-.

a lower bound on the fraction of support vectors; in additioig In the feature space, the shapes of the mapped re@oasd
asymptotically equal to both the fraction of SVs and the fraction R are simple (their boundaries are hypercirdlegindC.). They

of non-margin SVs with probability 1, under mild conditions on can be fully compared from their center locations and radii, which
the probability distribution generating the data. can be computed frowy, p1 andwa, p».

Finally, we note that we need never compute the mapping A simple way to comparé; andC- (i.e.,R1 andR.), and to
¢(Z): rather, by eq. (2), it follows thatw, x;) can be computed  build I(¢), consists of considering an interclass/intraclass ratio in
using only the dot product functiok(z;, Z;) = (xi, x;). A ker- F,such as
nel k represents a dot product in some feature space if it fulfills the distance between circle centers
Mercer conditions [4]. These conditions are satisfied for a wide I(t) = . -
range of kernels, including Gaussian radial basis functions, radius ofC: + radius ofC:

1 If wi = ws, which means that both training sets are located
k(Zi,%;) = exp <—2—2 7 — fj||2> : (4) around the same position, théft) = 0. This is what we expect
a in such situations. Let now assume # ws. Then, there exists

| | ipl h that:
3. ONLINE ABRUPT CHANGESDETECTION atleast at least one tripléps, p2, C) such that

ALGORITHM pLESNW
. . . . . p2 €ESNWs 5
In this section, we introduce our main result, namely an algorithm C is a circle of radiug with center0 ®)
aimed at detecting online abrupt changes in the distribution of vec- c1, ¢z, p1, andp: are all located o

tors #; observed sequentially in time. The sequengecan be
produced directly by a system. In signal processing applications,wherec; (respectivelys) are the points located at the intersection
it typically results from a preprocessing step aimed at extracting between the line passing throug@tand oriented alongv, (respec-
descriptors from a signal at each time instant tively wy) andS, see fig. 1.

c1 andc, are the (geometrical) centers of the region occupied
by the feature data, anpl andp» possess properties similar to

3.1. Algorithm description . : -
mapped margin support vectors as they lie on the separating hy-

Consider at timet two subsetse; = (Z¢—m,, - ,Z¢—1) and perplane. Yet all the 4 points possibly do not have pre-images in

x> = (%, - ,Tt+mo—1) Of Sizem: andm.. Each of these  the input space. Howevef(t) can be expressed in terms of dot

subsets are used to train independemt$V novelty detectors,  products in the feature space, i.e., as kernels in the input space. We

yielding parametersv,, p1 andwsa, p2, and decision region® note that/ (¢) can be written

andR.. The idea underlying our abrupt changes detector is that a

sudden change at tintén the distribution of vectors; may result _ |cTéa|

in different locations/ i i [ It) = = D ©)
geometries &; andR- (as depicted in the |cTP1| + |copa]

input space in fig. 2): in practice, at each timeve want to build

an indexI (t) that reflects the dissimilarity betwean andz- via where— denotes the circle arc. AS is of radiusl, the circle arc

ameasure of the dissimilarity betwe®n andR.. (The computa- IS also the circle angle between andc:, and

tion of I(t) for a givent is described in the next subsection). Once

I(t) is computed, the subsets andax are updated at time+ 1. ¢S = ¢,00, = cos~! (M) @)

The corresponding parametswys, p1 andw., p» are also updated [[wll-[[w2]|

using the online-SV novelty detection technique presented in [5].

This online technique avoids computing theéSV novelty detec-

tion parametersv, p from scratch at each time Abrupt changes < wy, w, > 1 Qi k(T Ta;)

are finally detected whenever the indé eaks or is over a = o L(A. 2 ))0.5 v de (o A )05

thresho|d¥7 (this is similar to most abrupté?hgnges detection tech- Twillliwall sy aninsh(@i, 81500 (0 ; vicess (@i, &)

niques). In the next subsection, we propose an original stationaritywherea; (resp.aw;) correspond tav; (resp.ws) andiy; (resp.

index induced by geometrical considerations in the feature space. ;). Using similar computations, we can express the circle arc
betweenc; andp; as

Using eg. (2), we have

3.2. Geometry in thefeature space

—~ _ —1 pP1
. . Cip1 = €08 ( k(1 s 0.5)
Consider a normalized Mercer kernel such thet, ) = 1, VZ. (; arienjk(Zi, 1))
The mapped training vectoss. = ¢(x;) are located on the hy- .
perspheres centered at the origin ofF (denoted), with radiusl. We obtain a similar result foesp,. This shows thafl(t) is a

Give_n atraining sgt, sayi, the _optir_nisation pr_oblem giveneq. (3) function that can be computed i usingk(-, ) only.
admits the following geometrical interpretation. The parameters

w1, p1 define a hyperplangV; in F, orthogonal tow; and dis- ~ Remark— If we use a positive kernel(7;, #;) > 0V(i, j), all
tant of p1 /||w1|| from 0 (see fig. 1).W; separates the mapped mapped data lie in the same orthant, and the an@lp; (i = 1, 2)
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Fig. 1. In the feature spac&, the training data are mapped on
a hypersphere with radius 1 and cented. Ther-SV novelty Fig. 2.
detector related te; (resp.x-) yields a hypercircl€, (resp.Cs)
in the hyperplanéV; (resp.W).

In the input space, evolution of the separating curves
yielded by the twa,-SV novelty detectors when the mean of one
of the two subsets change (top left, top right, bottom left, bottom
right). Two surfaces with a small overlap correspond to a change.

cannot exceed /2. The angleﬁoE is likely to be lower than
/2, especially if there is no abrupt change. In this case, the cosin

e , .
. L . P th Ity detector t d th sy Ti—1}. A sta-
being bijective orf0; 7/2[, we can consider the modified index e novelty detector trained on the @k, .., &1} A sta

tionarity index is built with the output of the detector:

F() = cos(cicCa) _ < wi1/p1, Wa/p2 > ) L (t) =< wo(t),p(Z:) > —po(t) 9)
cos(cTp1) + cos(caps)  [IWill/pr + [Iwall/pa _ ) o _

Simulations on music signals whefie were STFTs yielded good

results, though abnormality early detection was not adequate in

the context of music segmentation (where detection delay can be

From eq. 6, we see thd(t) is indeed a Fisher-like ratio. Hence, accepted).

abrupt changes will be detected whenever they correspond to an

3.3. Discussion

abrupt change of means (due to the tef@.) w.r.t. to the scale of 4. SIMULATIONS
the data (given by1p: andcip.). Note that/ (¢) is robust to out-
liersZ; which are not due to abrupt changes, becauS&/ novelty In this section, we compare our algorithm with two standard signal

detection rejects such outliers. Though based on the same fundaprocessing methods aimed at detecting abrupt changes, the Gener-
mentals as the Rayleigh coefficient used in Kernel Fisher Discrim- alized Likelihood Ratio (GLR, see e.g. [1] for a detailed presen-
inant (KFD) analysis [2], our coefficiedt(t) is different: in KFD, tation) and a technique based on distance between time-frequency
the Rayleigh coefficient is maximized w.r.t. the projection direc- subimages [7]. As opposed to GLR, this technique is model-free.
tion w whereas in our technique is yielded by the/-SV novelty All the three techniques are tested both on artificial and real data.
detectors. The set of artificial data is composed of 2000 realisations of
white gaussian noise of leng2948 filtered by an order 4 autore-
Another approach based on SV classification could be consid-gressive model whose moduli are equabt®9, and frequencies
ered, wherer; andx, are seen as training sets of two different are uniformely drawn betwee(05 and0.45. In the first1000
classes. One could train a SVM classifier using these two sets,signals, the AR parameters have an abrupt change at point 1024,
and consider the margin as the stationarity index. However, thisand the otheit000 are kept with no change. The three techniques
approach suffers from several drawbacks. First, when no abruptare tuned as follows. As depicted in the previous sections, our al-
change occursg; andx, are mixed; thus designing a classifier is  gorithm is fed with two subsets of descriptors extracted from the
somewhat artificial, and meaningless. Second, vectors consideredgmoothed pseudo Wigner-Ville of the input signal (time window of
as outliers inv-SV classification are different from those consid- length25, and frequency window of leng¥). Each training vec-
ered as outliers in the twe-SV novelty detectors. The way the toris a TFR subimage of width 12, and the training set siZ9is
former are selected in one set (e, is governed by the other  The support vector parameters ase= 1.5 for the RBF gaussian
set (e.g.ix2), and not by their intrisic behavior w.r.t. the process kernel andv = 0.2. The same TFR is used for the distance-based
Z;. Third, the computational burden is higher with SV classifica- method, with the TFR subimage width equallf, and we select
tion because training wittn; + m» vectors (inz: U x2) costs the Kolmogorov distance [7]. Finally, the GLR is given the correct
more than training independently with, andm. vectors. autoregressive model, with different ordegs:4 (correct order),
Finally, the approach in [6] addresses a related but different andé.
problem, namely early abnormality detection (where no detection For a given input signal, each method yields an index whose
delay is tolerated). In [6], a candidatk is tested with respectto  maximum, if higher than a (method-dependent) threshold, corre-
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sponds to an estimated abrupt change time instant. We define false
alarms (FAs) as the detection of a change outside the neighbor-
hood of the true change time instant, and true alarms (TAs) as the
correct detection of an abrupt change inside that neighborhood.
Fig. (3) plots the ROC curves (TAs vs. FAs) for the three meth-
ods. Both GLRs with autoregressive model orders 4 and 6 yield

True alarm rate

0.1 015 0z 0.25 03

False alarm rate

Fig. 5. Music signal (top) and the corresponding SVM abrupt
change detection index (bottom). For a threshpktjual t00.85,

all changes (dashed lines) are correctly detected, with only one
false positive (circled).

Fig. 3. ROC curves for the distance-based method (dot), GLR
with a lower order (dash-dot), SVM method (dash), and GLR with

correct or superior orders (solid). Very accurate performances are
yielded by the GLR with correct (and superior order) and the SVM

method.

5. CONCLUSION

In this paper, we introduced an original kernel technique for detect-
ing abrupt changes in signals. Simulations show its good behavior
w.r.t. other algorithms on synthetic data, and superior performance

very accurate results, which was expected as they were given theén music signals, both in terms of accuracy of the detection and
correct model. The SVM detector behaves accurately, with e.g. 95¢constrast.

per cent of true positives for 2 per cent of false positives, though

no priors over the analyzed data are given. The TF distance-based

method and the GLR with a lower order yield poor performances.
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