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ABSTRACT

We explain that decomposition methods, in particular, SMO-type
algorithms, are not suitable for linear SVMs with more data than
attributes. To remedy this difficulty, we consider a recent result
by Keerthi and Lin [7] that for an SVM which is not linearly sep-
arable, after C is large enough, the dual solutions are at similar
faces. Motivated by this property, we show that alpha seeding is
extremely useful for solving a sequence of linear SVMs. It largely
reduces the number of decomposition iterations to the point that
solving many linear SVMs requires less time than the original de-
composition method for one single SYM. We also conduct com-
parisons with other methods which are efficient for linear SVMs,
and demonstrate the effectiveness of the proposed approach for
helping the model selection.

1. INTRODUCTION

Given training vectorsz; € R",7 = 1,...,1, intwo classes, and
avector y € R' such that y; € {1, -1}, the standard SVM for-
mulation [3] isas follows: .
. 1 r
Irungré Ew w4+ C ;&
yi(w"g(@) +b) > 1-&, @)
& >0,i=1,...,1.

If p(x) = =, (1) isthe form of alinear SVM. On the other hand,
if  maps x to ahigher dimensional space, we call (1) anon-linear
SVM.

For anon-linear SVM, the number of variables depends on the
size of w and can be very large (even infinite), so people solve the
following dual form:

T T
min —a Qa—e «
a 2

subject to

y'a =0, (03]
0<a<Ci=1,...,1,

subject to

where @ is an [ x [ positive semi-definite matrix with Q,; =
viy;o(x:) T d(x;), and e is the vector of al ones. Usualy we
cal K(zi,2;) = ¢(x:)T¢(x;) the kernel function. (2) is solv-
able because its number of variablesis the size of the training set,
independent of the dimensionality of ¢(z). The prima and dual
relation shows w = ', a;yip(x:) so sgn(w”’ ¢(z) + b) =
son(XL_, ciyiK (x4, ) + b) isthe decision function.

Unfortunately, for large training set, @ becomes a huge dense
matrix that traditional optimization methods cannot be directly ap-
plied. Currently, some specially designed approaches such as de-
composition methods [6] and finding the nearest points of two con-
vex hulls[8] are major ways of solving (2).
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On the other hand, for linear SVMs, if n < I, w isnot ahuge
vector variable so (1) can be solved by many regular optimization
methods. Currently, on anormal computer, people have been able
to train a linear SYM with millions of data (e.g. [12]); but for
a non-linear SVM with much fewer data, we aready need more
computational time as well as computer memory.

Therefore, it isnatural to ask whether in an SVM software lin-
ear and non-linear SYMs should be treated differently and solved
by two methods. It isalso interesting to see how capable non-linear
SVM methods (e.g. decomposition methods) are for linear SVMs.

Recently, in many situations, linear and non-linear SVMs are
considered together. Some approaches [9, 11] approximate non-
linear SVM by different problems which are in the form of linear
SVM with n < [. In addition, for non-linear SYM model selec-
tion with Gaussian kernel, [7] proposed an efficient method which
has to conduct linear SYM model selection first (i.e. linear SVMs
with different C). Therefore, it isimportant to discuss optimiza-
tion methods for linear and non-linear SVMs at the same time.

This paper is organized as follows. In Section 2, we show
that existing decomposition methods areinefficient for training lin-
ear SVMs. Section 3 presents our new strategy of training linear
SVM via decomposition methods, which is hundred or thousand
times faster. The proposed method is compared with existing lin-
ear SYM methods in Section 4. We then, in Section 5, apply the
new implementation to solve a sequence of linear SVMs required
for the model selection method in [7]. Concluding remarks are in
Section 6.

2. EXISTING DECOMPOSITION METHODS FOR
LINEARSVM WITH n <1

The decomposition method is an iterative procedure. In each step,
theindex set of variables are separated to two sets B and IV, where
B istheworking set. Then inthat iteration variables corresponding
to IV are fixed while a sub-problem on variables corresponding to
B is minimized. If g is the size of the working set B, in each
iteration, only g columns of the Hessian matrix @ are required.
They can be calculated and stored in the computer memory when
needed. Thus, unlike regular optimization methods which usually
require the access of the whole @, here, the memory problem is
avoided. Clearly, decomposition methods are specially designed
for nonlinear SVMs. In this section, we discuss issues when they
are applied to solve linear SVMs.

2.1. Slow Convergence

Unlike popular optimization methods such as Newton or quasi-
Newton which enjoy fast convergence, decomposition methods
converges slowly as in each iteration only very few variables are
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Fig. 1. Number of decomposition iterationsfor solving SVM with
linear (the thick line) and RBF (the thin line) kernel

updated. We will show that the situation is even worse when solv-
ing linear SVMs.

It has been demonstrated (e.g. [5]) by experimentsthat if C' is
large and the Hessian matrix @ is not well-conditioned, decompo-
sition methods converge very slowly. For linear SVMs, if n < I,
then @ is alow-rank matrix which is not well-conditioned. When
C islarge, we can see the number of decomposition iterations dra-
matically increases. The situation is much worse than that for non-
linear SVMs. In Figure 2.1, we demonstrate a simple example by
using the problem heart from the statlog database. Each attribute
isscaledto[—1, 1]. WeuseLIBSVM [1] to solvelinear and nonlin-
ear SVMs (RBF kernel, e~ 12:=23lI/(27%) with 1/(20%) = 1/n)
with ¢ = 278 2775 . 2% and present the number of itera-
tions. Though two different optimization problems are solved (in
particular, their Q;;'sarein different ranges), Figure 2.1 clearly in-
dicates the huge number of iterations for solving the linear SVM.
In the following, we give some theoretical explanation about this
difficulty.

For problems which are not linearly separable, [7] proved the
following result:

Theorem 1 There exists a finite value C* and (w*, b*) such that
(w,b) = (w*,b*) solves (1) after C > C*. Inaddition, 3! _, &
isa constant after C > C*.

Therefore, after C > C*, o Qa = w™w becomes a con-
stant. Since %wTw + CZizl & =ela— %aTQa , diter C >
C*, 2a"Qa — e"aisalinear decreasing function of C.

It has been shown in [10] that, under some conditions, a com-
monly used decomposition method is linearly convergent. There-
fore, using the zero vector astheinitia point, the smaller the opti-
mal value is, more decomposition iterations are needed.

Though linear SYM with n < [ does not satisfy the assump-
tions in [10], if it is still linearly convergent, when C' is large,
10" Qa — e o decreases linearly with C. This resultsin the dif-
ficulty that the number of decomposition iterations may increase
linearly.

Furthermore, [10, Section 4] explains that the linear conver-
gence rate of linear SVMs is relatively smaller than that of non-
linear SVMs whose kernel matrices are well-conditioned. This
indicates that decomposition methodsis inherently not suitable for
linear SVM dueto its slow convergence.

2.2. Special Implementation for Linear SYMs

Though we have shown a disadvantage of using decomposition
methods for linear SVMs, for practical implementations, there are
special properties of linear SVMs which can speed up each itera-
tion.

Most decomposition implementations maintain the gradient
vector of thedual objective function duringiterations. It isused for

selecting the working set or checking the stopping condition. We
usually calculate the gradient Qo — e by the following way: Sup-
pose oF 1 and o* are solutions of two consecutive decomposition
iterations, Qo —e = Qa* —e+Q (ot —a*). Sincefrom o®
to o***, only ¢ components are changed, Q (o*** — o¥) involves
with ¢ columns of the matrix Q. For anon-linear SVM where Q) is
too large to be stored in the computer memory, the calculation of
lq kernel elements becomes the main computational cost in each
decomposition iteration. |f each kernel evaluation requires O(n)
operations, O(Ingq) isthe complexity of each iteration.

However, for linear SVM, Q(a*+! — o*) = XT (X (o*+* —
a¥)), where X = [yiz1,...,ya] isan n by [ matrix. Thus,
X (a*T — o) involves O(nq) operations and X7 (X (o1 —
a®)) needs O(In). Therefore, O(Ing) operations are largely re-
duced to O(In). The first decomposition software which imple-
ments this for linear SVYM is SYM!9% [6]. Another implementa-
tionisBSVM [5].

However, for SMO [14] implementations where ¢ = 2, the
main cost of each iteration is only reduced by half. From this as-
pect, SMO typeimplementations are particular not suitablefor lin-
ear SVM. In other words, using alarger g, the cost on updating the
gradient is the same but the number of iterationsis smaller. Thus,
we should increase ¢ until the cost of solving the sub-problem
(usually O(¢®)) becomes a dominant part.

3. ALPHA SEEDING FOR LINEAR SVM

Results in [7] show the following properties of the dual linear
SVM: Thereis C* such that for al C > C*, there are optimal so-
lutions at the sameface. Inaddition, foral C > C*, the primal so-
lution w isthe same. The definition that two points are at the same
faceis asfollows: Let o be afeasible vector of (2) for C = C;
and o? be afeasible vector of (2) for C = C,. We say that o' and
o? are on the same face if the following hold: (i) {i | 0 < af <
Ciy={i|0<a? <Co};([i){i|lat =Ci} ={i|a? =},
and, (iii) {i | of = 0} = {i | & = 0}. Therefore, aface
means a partition of {1,...,1} to three sets where corresponding
components of « are free, upper-bounded, and |ower-bounded.

Based on these properties, we conjecture that for large C, op-
timal solutions are at similar faces. Therefore, if o' isan optimal
solutionat C = C4, then o' C»/C; canbeavery good initial point
for solving (2) with C = C,. This technique, caled alpha seed-
ing, was originally proposed for SYM model selection [4] where
severa (2) with different C' have to be solved.

Earlier work which focus on nonlinear SVMsmainly usea pha
seeding as a heuristic. Now for linear SVMs, a102/01 is at the
same face as o' so most likely it isat asimilar face of one optimal
solution of C = C,. This strongly supports its use as the initial
solution.

Next, we conduct some comparisons between the proposed
and the original implementations. Here, we consider two-class
problems only. Some statistics of the data set used arein Table 2.

Wetrain linear SYMswith C = [278,277% ... 28]. Tablel
presents the total number of iterations of training 33 linear SYMs
using the alpha seeding approach. There are quite afew implemen-
tation considerations. Here, the code is modified from LIBSVM,;
details are in [2]. We then individually solve 33 problems and list
the number of iterations (total, C = 27-%, and C = 28). For the
new approach, we also list the approximate C'* for which linear
SVM with C > C™ have the same decision function. In addition,
the constant wT w after C > C* isalso given. For some problems
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«a-seeding without a-seeding

Problem Hiter] C* wTw| #otdite] C =277 C =2°
heart 27231 235 5713 2449067 507124 737734
australian 79162 225 2071 20353966 3981265 5469092
diabetes 33264 265 1669 1217926 274159 279062
german 277932 210 3783 42673649 6778373 14641137
web 240442472 unstablg unstabld > 108 74717242 > 108
adult 3212093 unstablg unstabld > 10%| 56214289 8411162
ijcnn 590645 26|  108.6 41440735 8860930 1392752

Table 1. Comparison of iterations (linear kernel); with and without
alpha seeding.

Problem 1 n | a-seeding | without a-seeding
heart 270 13 43663 56792
australian 690 14 230983 323288
diabetes 768 8 101378 190047
german 1000 24 191509 260774
web 49749 | 300 633788 883319
adult 32561 | 123 2380265 4110663
ijicnn 49990 22 891563 1968396

Table 2. Comparison of iterations (RBF kernel); with and without
alpha seeding.

(e.g. web and adult), w™w has not reached a constant until C' is
very large so we indicate them as “unstable” in Table 1.

It can be clearly seen that the al pha seeding approach performs
so well to the point that its total number of iterationsis much less
than solving one single linear SVM with the original decomposi-
tion implementation. Therefore, even if we intend to solve one
linear SYM with a particular C, using the proposed al pha seeding
method starting from a smaller C may be more efficient.

Our experimenta results indicate that the slow convergence
of decomposition methods causes a huge number of iterations for
changing some initial zero components to the upper bound C. On
the other hand, the new approach starts from a small C' where an
optimal solution can be easily obtained. Then, asthenext C' isonly
slightly increased, the optimal solution face is not changed much.
Hence, using the previous solution multiplied by the increase of C'
asinitial points, the saving on the number of iterationsis dramatic.

Furthermore, since we have solved linear SVMswith different
C, model selection by crossvalidationis aready done. To be more
precise, we can randomly separate data to different folds first. If
one fold is singled out as the validation set, we sequentially train
the rest and predict the validation set using different C'. This will
be discussed in Section 5.

To demonstrate that alpha seeding is much more effective for
linear than nonlinear SVMs, Table 2 presents the number of iter-
ations using the RBF kernel K (z;,z;) = e~ I7:=%ill*/(2e®) with
1/20% = 1/n. It can be clearly seen that the saving of iterations
by using apha seeding is marginal. In addition, comparing the
“total iter” columns of both tables, we confirm again the slow
convergence for linear SVMsif without alpha seeding.

To further justify the alpha seeding approach for linear SVMs,
in[2] we prove the following theorem:

Theorem 2 Assume that any two parallel hyperplanesin the fea-
ture space do not contain more than n + 1 points of {z;} on them.
We have

1. For any optimal solution of (2), it has no morethan n + 1
free components.

2. Thereis C* such that after C > C*, all optimal solutions
of (2) share at least the same ! — n — 1 upper and lower-
bounded « variables.

Thisresultindicatesthat if n < [, starting from small C', most
components of optimal solutions are at bounds. From any C, to
Cs, even if all free components are different, two solutions share
at least I — 2(n + 1) bounded variables. If C is not far away
from C4, it is less likely that an upper (lower) component at C
becomes a lower (upper) bound at C>. Thus, it is highly possible
that the initial solution by alpha seeding has correctly identified at
least I — 2(n + 1) components of an optimal solution.

Theorem 2 aso helps to explain why web is the most difficult
problem for resultsin Table 1. Itslarge number of attributes might
lead to more free variables during iterations or at the final solution.
Thus, alpha seeding is less effective.

Another result which supports the use of alpha seeding isthe
following theorem:

Theorem 3 There are two vectors A, B, and a number C* such
that for any C > C*, AC + B isan optimal solution of (2).

The proof isin [2]. This theorem extends the result in [7] which
shows only that for any C > C*, there are optimal solutions o
which form alinear function of C on theinterval [C*, C]. Clearly
A, > 0sowecan consider thefollowing three situations of vectors

A and B:

1.0<Ai§1, 2.A¢:0,Bi:0, 3.A¢:0,Bi>0.
For the second case, a}g—f = A;C> + B; = 0. For thefirst case,
A;C > B dter C islarge enough. Thus, o} &2 = A,Cz +
Bi§2 ~ A;C; + B;. Using Theorem 2, there are few (< n + 1)
components satisfying the third case. Thisanalysis also showsthe
effectiveness of using alpha seeding.

4. COMPARISON WITH OTHER APPROACHES

Decomposition methods with a-seeding | Linear SVMs methods

q =2 (LIBSVM) | q = 30 (BSVM) | ASVM LSVM
problem | total iter time [total iter time time time
australian] 79162 2.87 145 0.85 3.79 0.83
heart 27231 0.39 65 0.14 0.40 0.39
diabetes 33264 1.48 118 0.3 0.73 0.86
german 277932 2143 144 0.65 2.80 3.50
ijcnn 590645 [1119.99 1409 46.71 215.37 633.66
ladult 3212093 [1123.18 | 129440 | 15352 896.56 4605.17
\web 24044242 1415453 [1559664 |1140.09 | 4277.12 44468.48

Table 3. Comparison of approaches for linear SVMs (timein sec-
ond; ¢: size of the working set of decomposition methods.)

It is interesting to compare the proposed approach with other
methods. In particular, there are approaches which are mainly suit-
able for linear SYMs. In this section, we consider Active SVM
(ASVM) [12] and Lagrangian SVM (LSVM) [13].

LIBSVM, the software used in Section 3, implementsan SMO-
type decomposition method where in each iteration two variables
are updated. For problems with more free variables at final so-
lutions, many such updates (i.e. iterations) are needed. As now
the number of free variablesis generally lessthan n + 1 and most
bounded variables have been identified in the beginning using al-
pha seeding, we suspect that a decomposition method with alarger
working set can benefit more from the alpha seeding. Thus, here
we implement it in another decomposition software BSVM [5]
which alows an arbitrary size of the working set.

However, BSVM, ASVM, and LSVM all solve dlightly dif-
ferent formulations from (1). (Due to space limit, we discuss the
difference of theirimplementationsin[2].) Thus, itisvery difficult
to conduct afair comparison. Our goal hereisonly to demonstrate
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that decomposition methods, which are originally unsuitable for
solving linear SYMs, can be competative with other linear-SVM
methods, using the proposed implementation. Table 3 presents a
comparison of the four implementations. We use the same bench-
mark problems as in Section 3. The computational experiments
were done on a Pentium [11-1000 with 1024MB RAM using the
gcc compiler.

For each problem, linear SYMswithC =278,2775 ... 28
are solved. Except the total computational time, we aso list the
number of iterations of the two decomposition implementations.
Clearly for problems with small n, for each C', BSVM takes very
few iterations. The computational time is also less than that of
LIBSVM. This is consistent with our earlier statement that for
linear SVM's, SMO-type decomposition methods are lessfavorable
than general decomposition methods with larger working sets.

Since alpha seeding is not applied to ASVM and LSVM, we
admit that their computational time can be improved. Results here
also serves as the first comparison between ASVM and LSVM.
Clearly ASVM isfaster. Moreover, due to the huge computational
time, we set the maximal iterations of LSVM to be 1000. For
problems adult and web, after C' islarge, the limit of iterationsis
reached before stopping conditions are satisfied.

5. EXPERIMENTSON MODEL SELECTION

If the RBF kernel is used, [7] proposes the following model selec-
tion procedure for finding good C and o2:

1. Search for the best C of linear SVMsand call it C.

2. Fix C from step 1 and search for the best (C, o) satisfying
log o® = log C — log C using the RBF kernel.

That is, we solve a sequence of linear SVMs first and then a se-
guence of nonlinear SVMswith the RBF kernel. The advantage of
this approach over an exhaust search of the parameter spaceis that
only parametersontwo linesare considered. If the original decom-
position method is used for both linear and nonlinear SVMs here,
due to the huge number of iterations, solving the linear SVMs be-
comes the bottleneck. Our goal in this section isto show that using
the new approach for linear SVMs, the computational time spent
on the linear part is no longer a problem.

Earlier in [7], due to the difficulty on solving linear SVMs,
only small two-class problems are tested. Here we would like to
evaluate this approach on large multi-class datasets. We consider
four problems: dna, satimage, letter, and shuttle. Details of our
settingsarein [2].

We search for C' by five-fold cross validation on linear SVMs
using uniformly spaced log, C vauein [—10, 10] (with grid space
0.5). Then the search of (log, C,log, ¢*) isby considering points
in [-2,12] x [-10,4] (with grid space 1) satisfying logo? =
log C — log C. Thus, the number of SVMs solved in two steps
may be different.

Table 4 presents experimental results. For each problem, we
comparethetest accuracy by acomplete grid search and the model
selection method in [7]. Their performance is very similar. How-
ever, the total model selection time of the new method is much
shorter. We achieve this because using the apha seeding, solving
one linear SVM is as fast as solving a non-linear one. Otherwise,
time for solving linear SYMsis alot more so the proposed model
selection method does not possess any advantage.

Grid search Method by Keerthi and Lin
Problem Timg Accuracy] Timg Linear(#SVMs) RBF(#SVMs)| Accuracy|
dna 15239 9511 128§ 1149(123 137(23 95.19
satimage| 24505 92.2 4119 3879(615), 240(176) 91.3
letter 135881 97.72 22003 16802(13325)  5201(3983 96.62
shuttle 243375 99.94 11783 9433(861, 2350(249 99.85

Table4. Comparison of different model sel ection methods (timein
second; “Linear(#SVMs):” time for linear SVMs and the number
of linear SYMs solved.)

6. CONCLUSION

In conclusion, we hope that based on this work, SVM software
using decomposition methods can be suitable for all types of prob-
lems, nomatter n < lorn > [.
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