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ABSTRACT
We explain that decomposition methods, in particular, SMO-type
algorithms, are not suitable for linear SVMs with more data than
attributes. To remedy this difficulty, we consider a recent result
by Keerthi and Lin [7] that for an SVM which is not linearly sep-
arable, after � is large enough, the dual solutions are at similar
faces. Motivated by this property, we show that alpha seeding is
extremely useful for solving a sequence of linear SVMs. It largely
reduces the number of decomposition iterations to the point that
solving many linear SVMs requires less time than the original de-
composition method for one single SVM. We also conduct com-
parisons with other methods which are efficient for linear SVMs,
and demonstrate the effectiveness of the proposed approach for
helping the model selection.

1. INTRODUCTION

Given training vectors �� � ��� � � �� � � � � �, in two classes, and
a vector � � �� such that �� � ������, the standard SVM for-
mulation [3] is as follows:
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If ���	 � �, (1) is the form of a linear SVM. On the other hand,
if � maps � to a higher dimensional space, we call (1) a non-linear
SVM.

For a non-linear SVM, the number of variables depends on the
size of 	 and can be very large (even infinite), so people solve the
following dual form:
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where � is an � � � positive semi-definite matrix with ��
 �
���
����	

����
	, and � is the vector of all ones. Usually we
call ����� �
	 � ����	

����
	 the kernel function. (2) is solv-
able because its number of variables is the size of the training set,
independent of the dimensionality of ���	. The primal and dual
relation shows 	 �

��
��� 
�������	 so sgn�	����	 � �	 �

sgn�
��

��� 
�������� �	 � �	 is the decision function.
Unfortunately, for large training set, � becomes a huge dense

matrix that traditional optimization methods cannot be directly ap-
plied. Currently, some specially designed approaches such as de-
composition methods [6] and finding the nearest points of two con-
vex hulls [8] are major ways of solving (2).

On the other hand, for linear SVMs, if �� �, 	 is not a huge
vector variable so (1) can be solved by many regular optimization
methods. Currently, on a normal computer, people have been able
to train a linear SVM with millions of data (e.g. [12]); but for
a non-linear SVM with much fewer data, we already need more
computational time as well as computer memory.

Therefore, it is natural to ask whether in an SVM software lin-
ear and non-linear SVMs should be treated differently and solved
by two methods. It is also interesting to see how capable non-linear
SVM methods (e.g. decomposition methods) are for linear SVMs.

Recently, in many situations, linear and non-linear SVMs are
considered together. Some approaches [9, 11] approximate non-
linear SVM by different problems which are in the form of linear
SVM with � � �. In addition, for non-linear SVM model selec-
tion with Gaussian kernel, [7] proposed an efficient method which
has to conduct linear SVM model selection first (i.e. linear SVMs
with different �). Therefore, it is important to discuss optimiza-
tion methods for linear and non-linear SVMs at the same time.

This paper is organized as follows. In Section 2, we show
that existing decomposition methods are inefficient for training lin-
ear SVMs. Section 3 presents our new strategy of training linear
SVM via decomposition methods, which is hundred or thousand
times faster. The proposed method is compared with existing lin-
ear SVM methods in Section 4. We then, in Section 5, apply the
new implementation to solve a sequence of linear SVMs required
for the model selection method in [7]. Concluding remarks are in
Section 6.

2. EXISTING DECOMPOSITION METHODS FOR
LINEAR SVM WITH �� �

The decomposition method is an iterative procedure. In each step,
the index set of variables are separated to two sets� and� , where
� is the working set. Then in that iteration variables corresponding
to � are fixed while a sub-problem on variables corresponding to
� is minimized. If � is the size of the working set �, in each
iteration, only � columns of the Hessian matrix � are required.
They can be calculated and stored in the computer memory when
needed. Thus, unlike regular optimization methods which usually
require the access of the whole �, here, the memory problem is
avoided. Clearly, decomposition methods are specially designed
for nonlinear SVMs. In this section, we discuss issues when they
are applied to solve linear SVMs.

2.1. Slow Convergence

Unlike popular optimization methods such as Newton or quasi-
Newton which enjoy fast convergence, decomposition methods
converges slowly as in each iteration only very few variables are
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Fig. 1. Number of decomposition iterations for solving SVM with
linear (the thick line) and RBF (the thin line) kernel

updated. We will show that the situation is even worse when solv-
ing linear SVMs.

It has been demonstrated (e.g. [5]) by experiments that if � is
large and the Hessian matrix � is not well-conditioned, decompo-
sition methods converge very slowly. For linear SVMs, if � � �,
then � is a low-rank matrix which is not well-conditioned. When
� is large, we can see the number of decomposition iterations dra-
matically increases. The situation is much worse than that for non-
linear SVMs. In Figure 2.1, we demonstrate a simple example by
using the problem heart from the statlog database. Each attribute
is scaled to ���� ��. We use LIBSVM [1] to solve linear and nonlin-

ear SVMs (RBF kernel, ���������
����
�� with ������	 � ���)

with � � ���� ������ � � � � �� and present the number of itera-
tions. Though two different optimization problems are solved (in
particular, their��
 ’s are in different ranges), Figure 2.1 clearly in-
dicates the huge number of iterations for solving the linear SVM.
In the following, we give some theoretical explanation about this
difficulty.

For problems which are not linearly separable, [7] proved the
following result:

Theorem 1 There exists a finite value �� and �	�� ��	 such that
�	� �	 � �	�� ��	 solves (1) after � � ��. In addition,

��
��� 
�

is a constant after � � ��.

Therefore, after � � ��, 
��
 � 	�	 becomes a con-
stant. Since �

�
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 , after � �

��, �
�

��
� ��
 is a linear decreasing function of �.

It has been shown in [10] that, under some conditions, a com-
monly used decomposition method is linearly convergent. There-
fore, using the zero vector as the initial point, the smaller the opti-
mal value is, more decomposition iterations are needed.

Though linear SVM with � � � does not satisfy the assump-
tions in [10], if it is still linearly convergent, when � is large,
�
�

��
� ��
 decreases linearly with �. This results in the dif-

ficulty that the number of decomposition iterations may increase
linearly.

Furthermore, [10, Section 4] explains that the linear conver-
gence rate of linear SVMs is relatively smaller than that of non-
linear SVMs whose kernel matrices are well-conditioned. This
indicates that decomposition methods is inherently not suitable for
linear SVM due to its slow convergence.

2.2. Special Implementation for Linear SVMs
Though we have shown a disadvantage of using decomposition
methods for linear SVMs, for practical implementations, there are
special properties of linear SVMs which can speed up each itera-
tion.

Most decomposition implementations maintain the gradient
vector of the dual objective function during iterations. It is used for

selecting the working set or checking the stopping condition. We
usually calculate the gradient �
� � by the following way: Sup-
pose 
�	� and 
� are solutions of two consecutive decomposition
iterations,�
�	��� � �
������
�	��
�	� Since from 
�

to 
�	�, only � components are changed, ��
�	��
�	 involves
with � columns of the matrix�. For a non-linear SVM where � is
too large to be stored in the computer memory, the calculation of
�� kernel elements becomes the main computational cost in each
decomposition iteration. If each kernel evaluation requires ���	
operations, �����	 is the complexity of each iteration.

However, for linear SVM, ��
�	� � 
�	 � �� ���
�	� �

�		, where � � ������ � � � � ����� is an � by � matrix. Thus,
��
�	� � 
�	 involves ����	 operations and �� ���
�	� �

�		 needs ����	. Therefore, �����	 operations are largely re-
duced to ����	. The first decomposition software which imple-
ments this for linear SVM is SVM����� [6]. Another implementa-
tion is BSVM [5].

However, for SMO [14] implementations where � � �, the
main cost of each iteration is only reduced by half. From this as-
pect, SMO type implementations are particular not suitable for lin-
ear SVM. In other words, using a larger �, the cost on updating the
gradient is the same but the number of iterations is smaller. Thus,
we should increase � until the cost of solving the sub-problem
(usually ���
	) becomes a dominant part.

3. ALPHA SEEDING FOR LINEAR SVM

Results in [7] show the following properties of the dual linear
SVM: There is �� such that for all � � ��, there are optimal so-
lutions at the same face. In addition, for all� � ��, the primal so-
lution	 is the same. The definition that two points are at the same
face is as follows: Let 
� be a feasible vector of (2) for � � ��

and 
� be a feasible vector of (2) for � � ��. We say that 
� and

� are on the same face if the following hold: (i) �� 	 
 � 
�� �
��� � �� 	 
 � 
�� � ���; (ii) �� 	 
�� � ��� � �� 	 
�� � ���;
and, (iii) �� 	 
�� � 
� � �� 	 
�� � 
�. Therefore, a face
means a partition of ��� � � � � �� to three sets where corresponding
components of 
 are free, upper-bounded, and lower-bounded.

Based on these properties, we conjecture that for large �, op-
timal solutions are at similar faces. Therefore, if 
� is an optimal
solution at� � ��, then
������ can be a very good initial point
for solving (2) with � � ��. This technique, called alpha seed-
ing, was originally proposed for SVM model selection [4] where
several (2) with different � have to be solved.

Earlier work which focus on nonlinear SVMs mainly use alpha
seeding as a heuristic. Now for linear SVMs, 
������ is at the
same face as 
� so most likely it is at a similar face of one optimal
solution of � � ��. This strongly supports its use as the initial
solution.

Next, we conduct some comparisons between the proposed
and the original implementations. Here, we consider two-class
problems only. Some statistics of the data set used are in Table 2.

We train linear SVMs with � � ����� ������ � � � � ���. Table 1
presents the total number of iterations of training 33 linear SVMs
using the alpha seeding approach. There are quite a few implemen-
tation considerations. Here, the code is modified from LIBSVM;
details are in [2]. We then individually solve 33 problems and list
the number of iterations (total, � � ����, and � � ��). For the
new approach, we also list the approximate �� for which linear
SVM with � � �� have the same decision function. In addition,
the constant 	�	 after � � �� is also given. For some problems
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�-seeding without �-seeding
Problem #iter �� ��� #total iter � � �

��� � � �
�

heart 27231 �
��� 5.712 2449067 507122 737734

australian 79162 �
��� 2.071 20353966 3981265 5469092

diabetes 33264 �
��� 16.69 1217926 274155 279062

german 277932 �
�� 3.783 42673649 6778373 14641135

web 24044242 unstable unstable � ��
� 74717242 � ��

�

adult 3212093 unstable unstable � ��
� 56214289 84111627

ijcnn 590645 �
� 108.6 41440735 8860930 13927522

Table 1. Comparison of iterations (linear kernel); with and without
alpha seeding.

Problem � � �-seeding without �-seeding
heart 270 13 43663 56792
australian 690 14 230983 323288
diabetes 768 8 101378 190047
german 1000 24 191509 260774
web 49749 300 633788 883319
adult 32561 123 2380265 4110663
ijcnn 49990 22 891563 1968396

Table 2. Comparison of iterations (RBF kernel); with and without
alpha seeding.

(e.g. web and adult), 	�	 has not reached a constant until � is
very large so we indicate them as “unstable” in Table 1.

It can be clearly seen that the alpha seeding approach performs
so well to the point that its total number of iterations is much less
than solving one single linear SVM with the original decomposi-
tion implementation. Therefore, even if we intend to solve one
linear SVM with a particular �, using the proposed alpha seeding
method starting from a smaller � may be more efficient.

Our experimental results indicate that the slow convergence
of decomposition methods causes a huge number of iterations for
changing some initial zero components to the upper bound �. On
the other hand, the new approach starts from a small � where an
optimal solution can be easily obtained. Then, as the next� is only
slightly increased, the optimal solution face is not changed much.
Hence, using the previous solution multiplied by the increase of �
as initial points, the saving on the number of iterations is dramatic.

Furthermore, since we have solved linear SVMs with different
�, model selection by cross validation is already done. To be more
precise, we can randomly separate data to different folds first. If
one fold is singled out as the validation set, we sequentially train
the rest and predict the validation set using different �. This will
be discussed in Section 5.

To demonstrate that alpha seeding is much more effective for
linear than nonlinear SVMs, Table 2 presents the number of iter-
ations using the RBF kernel ����� �
	 � ���������

����
�� with
����� � ���. It can be clearly seen that the saving of iterations
by using alpha seeding is marginal. In addition, comparing the
“total iter.” columns of both tables, we confirm again the slow
convergence for linear SVMs if without alpha seeding.

To further justify the alpha seeding approach for linear SVMs,
in [2] we prove the following theorem:

Theorem 2 Assume that any two parallel hyperplanes in the fea-
ture space do not contain more than ��� points of ���� on them.
We have

1. For any optimal solution of (2), it has no more than � � �
free components.

2. There is �� such that after � � ��, all optimal solutions
of (2) share at least the same � � � � � upper and lower-
bounded 
 variables.

This result indicates that if �� �, starting from small�, most
components of optimal solutions are at bounds. From any �� to
��, even if all free components are different, two solutions share
at least � � ��� � �	 bounded variables. If �� is not far away
from ��, it is less likely that an upper (lower) component at ��

becomes a lower (upper) bound at ��. Thus, it is highly possible
that the initial solution by alpha seeding has correctly identified at
least � � ���� �	 components of an optimal solution.

Theorem 2 also helps to explain why web is the most difficult
problem for results in Table 1. Its large number of attributes might
lead to more free variables during iterations or at the final solution.
Thus, alpha seeding is less effective.

Another result which supports the use of alpha seeding is the
following theorem:

Theorem 3 There are two vectors �, �, and a number �� such
that for any � � ��, �� � � is an optimal solution of (2).

The proof is in [2]. This theorem extends the result in [7] which
shows only that for any 
� � ��, there are optimal solutions 

which form a linear function of � on the interval ���� 
��. Clearly
�� � 
 so we can consider the following three situations of vectors
� and �:

1. 
 � �� � �� 2. �� � 
� �� � 
� 3. �� � 
� �� � 
�

For the second case, 
��
��

��
� ���� � �� � 
. For the first case,

��� 
 �� after � is large enough. Thus, 
��
��

��
� ���� �

��
��

��
� ���� � ��. Using Theorem 2, there are few �� �� �	

components satisfying the third case. This analysis also shows the
effectiveness of using alpha seeding.

4. COMPARISON WITH OTHER APPROACHES

Decomposition methods with �-seeding Linear SVMs methods
� � � (LIBSVM) � � �� (BSVM) ASVM LSVM

problem total iter time total iter time time time
australian 79162 2.87 145 0.85 3.79 0.83
heart 27231 0.39 65 0.14 0.40 0.39
diabetes 33264 1.48 118 0.3 0.73 0.86
german 277932 21.43 144 0.65 2.80 3.50
ijcnn 590645 1119.99 1409 46.71 215.37 633.66
adult 3212093 1123.18 129440 153.52 896.56 4605.17
web 24044242 4154.53 1559664 1140.09 4277.12 44468.48

Table 3. Comparison of approaches for linear SVMs (time in sec-
ond; �: size of the working set of decomposition methods.)

It is interesting to compare the proposed approach with other
methods. In particular, there are approaches which are mainly suit-
able for linear SVMs. In this section, we consider Active SVM
(ASVM) [12] and Lagrangian SVM (LSVM) [13].

LIBSVM, the software used in Section 3, implements an SMO-
type decomposition method where in each iteration two variables
are updated. For problems with more free variables at final so-
lutions, many such updates (i.e. iterations) are needed. As now
the number of free variables is generally less than �� � and most
bounded variables have been identified in the beginning using al-
pha seeding, we suspect that a decomposition method with a larger
working set can benefit more from the alpha seeding. Thus, here
we implement it in another decomposition software BSVM [5]
which allows an arbitrary size of the working set.

However, BSVM, ASVM, and LSVM all solve slightly dif-
ferent formulations from (1). (Due to space limit, we discuss the
difference of their implementations in [2].) Thus, it is very difficult
to conduct a fair comparison. Our goal here is only to demonstrate
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that decomposition methods, which are originally unsuitable for
solving linear SVMs, can be competative with other linear-SVM
methods, using the proposed implementation. Table 3 presents a
comparison of the four implementations. We use the same bench-
mark problems as in Section 3. The computational experiments
were done on a Pentium III-1000 with 1024MB RAM using the
gcc compiler.

For each problem, linear SVMs with � � ���� ������ � � � � ��

are solved. Except the total computational time, we also list the
number of iterations of the two decomposition implementations.
Clearly for problems with small �, for each �, BSVM takes very
few iterations. The computational time is also less than that of
LIBSVM. This is consistent with our earlier statement that for
linear SVMs, SMO-type decomposition methods are less favorable
than general decomposition methods with larger working sets.

Since alpha seeding is not applied to ASVM and LSVM, we
admit that their computational time can be improved. Results here
also serves as the first comparison between ASVM and LSVM.
Clearly ASVM is faster. Moreover, due to the huge computational
time, we set the maximal iterations of LSVM to be 1000. For
problems adult and web, after � is large, the limit of iterations is
reached before stopping conditions are satisfied.

5. EXPERIMENTS ON MODEL SELECTION

If the RBF kernel is used, [7] proposes the following model selec-
tion procedure for finding good � and ��:

1. Search for the best � of linear SVMs and call it ��.

2. Fix �� from step 1 and search for the best �����	 satisfying
��� �� � ���� � ��� �� using the RBF kernel.

That is, we solve a sequence of linear SVMs first and then a se-
quence of nonlinear SVMs with the RBF kernel. The advantage of
this approach over an exhaust search of the parameter space is that
only parameters on two lines are considered. If the original decom-
position method is used for both linear and nonlinear SVMs here,
due to the huge number of iterations, solving the linear SVMs be-
comes the bottleneck. Our goal in this section is to show that using
the new approach for linear SVMs, the computational time spent
on the linear part is no longer a problem.

Earlier in [7], due to the difficulty on solving linear SVMs,
only small two-class problems are tested. Here we would like to
evaluate this approach on large multi-class datasets. We consider
four problems: dna, satimage, letter, and shuttle. Details of our
settings are in [2].

We search for �� by five-fold cross validation on linear SVMs
using uniformly spaced ����

�� value in ���
� �
� (with grid space
0.5). Then the search of ����� �� ���� �

�	 is by considering points
in ���� ��� � ���
� �� (with grid space 1) satisfying ��� �� �

���� � ��� ��. Thus, the number of SVMs solved in two steps
may be different.

Table 4 presents experimental results. For each problem, we
compare the test accuracy by a complete grid search and the model
selection method in [7]. Their performance is very similar. How-
ever, the total model selection time of the new method is much
shorter. We achieve this because using the alpha seeding, solving
one linear SVM is as fast as solving a non-linear one. Otherwise,
time for solving linear SVMs is a lot more so the proposed model
selection method does not possess any advantage.

Grid search Method by Keerthi and Lin
Problem Time Accuracy Time Linear(#SVMs) RBF(#SVMs) Accuracy
dna 15238 95.11 1286 1149(123) 137(23) 95.19
satimage 24505 92.2 4119 3879(615) 240(176) 91.3
letter 135881 97.72 22003 16802(13325) 5201(3983) 96.62
shuttle 243375 99.94 11783 9433(861) 2350(249) 99.85

Table 4. Comparison of different model selection methods (time in
second; “Linear(#SVMs):” time for linear SVMs and the number
of linear SVMs solved.)

6. CONCLUSION

In conclusion, we hope that based on this work, SVM software
using decomposition methods can be suitable for all types of prob-
lems, no matter �� � or �
 �.
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