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ABSTRACT

The analysisof temporaldatais animportantissuein cur-

rentresearchbecausenostreal-world dataeitherexplicitly

or implicitly containssomeinformation abouttime. The
key to successfullysolving temporallearning tasksis to

analyzethe assumptiong@nd prior knowledgethat can be
madeaboutthe temporalprocessof the learning problem
andfind a representatiorof the dataand a learningalgo-
rithm thatmakeseffective useof thisknowledge.Thispaper
will presenta conciseoverview of the applicationof Sup-
port Vector Machinesto differenttemporallearningtasks
andthe correspondingemporalrepresentations.

1. INTRODUCTION

Thereis a multitude of learningtasksrelatedto temporal
phenomenand, correspondinglythereare mary possible
representationfor temporaldata.Learningtasksandrepre-
sentationarecloselyrelated:the No FreeLunch Theorem
[1] impliesthatfinding anadequatelpiasedrepresentation
canmalke a hardlearingproblemeasy(and,vice versathat
finding this representatioitself is hard).

Statisticaltime seriesanalysishas developedtwo big
classe®f representationsilamelythosein thetime domain
andthosein thefrequengy domain[2]. Analysisin thetime
domainis basedon the correlationbetweerthe currentand
previous obsenations,while the frequeny domaintriesto
decomposé¢hetime seriesnto cyclic componentst differ-
entfrequenciesFor learningtasks time seriesanalysishas
the following objectves: description(to describea time
seriesby certainstatistics),explanation(to understandhe
processhehinda time series),prediction(to predictfuture
valuesof the time series)and control (control the process
behindthetime seriesto generateertainfuturevalues).

For Machine Learning, an overall theory of temporal
analysisis much lessdeveloped. Learningtasksare usu-
ally takenfrom specificreal-world problemsandrepresen-
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tationsare often constructedad hoc. Morik [3] differenti-
atesbetweentwo differentaspect®f time, thelinearprece-
denceof eventsandimmediatedominanceof temporalcat-
egories. Thesetermsoriginatefrom naturallanguagethe-
ory [4]. Immediatedominanceaefersto the constructiorof
higherlevel cateyoriesof thetime-dependerglementsex-
emplarylearningtasksbasedon the conceptof immediate
dominancarethediscoveryof frequentepisode$5] or first
orderlogic learningbasedon Allen’s interval relations[6].
The aspecbf linear precedenceefersto the lineartempo-
ral order of the single eventsandis mostprominentin the
framework of time seriesanalysis.

The focus of this paperlies on the time seriesrepre-
sentationandthe typesof learningtasksthatcanbe solved
with supportvector machines(SVMs, [7]). Supportvec-
tor machineshave beenappliedto very differentkinds of
learning problems,for exampleto time seriesprediction
by Mukherjeeet al. in [8] andby Muller etal. in [9]. A
regressionproblem for time serieshas beensolved with
SVMsin [10], wherecertaincoeficientsof chemicalcom-
ponentshave beenpredictedfrom chromatographyime se-
ries. Changetal. [11] have presentecn approactfor time
seriessggmentatiorwith SVMs.

All of theseapplicationsarebasedon a singletime se-
riesrepresentatiorthe phasespacerepresentation, e. cre-
atingd-dimensionaéxampledy moving awindow of length
d overthetime series.Thetheoreticafoundationfor thisis
thetheorenof Takeng[12, 13] which stateghatfor dynami-
cal system®f acertaintype,thephase-spaceconstruction
andtheunobseredinternalstructureof thesystemaretopo-
logically identical,giventhe embeddinglimensionis large
enough At first glance this seemdik e the perfecttool: We
know thatwe canfind outall we needto know aboutatime
seriessimply by looking atlargeenoughtime windows and
in the SVM we have alearningalgorithmthatis well known
to performwell on high-dimensionatlata. But this conclu-
sionis fallacious. First of all, Taken's theoremdoesonly
hold for dynamicalsystemavhich canbe describecdy dif-
ferentialequationf a certainform. Generally onecannot
decidewhetherthis is the casefor a given real-word data
set. Secondthetheoryof structuralrisk minimization[7],
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onwhichtheSVM is basedis only formulatedfor indepen-
dent,identicallydistributeddata.Clearly, theindependence
assumptionis violatedfor time seriesdata. Although ver-
sionsof thecentraltheorem®f structuralrisk minimization
do alsohold for dependentiataof weakdependencstruc-
ture [14] andin practice,SVMs have beenshown to per
form quite well on time seriesdata,one shouldbe careful
to transferresultsof the SVM to this type of data. Finally,
evenif the premisesof Taken’s theoremandthe structural
risk minimizationprinciple do hold, a differentrepresenta-
tion of the datamay leadto a much easiergeneralization
(it is the“largeenoughdimension”-parbf Taken'stheorem
thatcancausemuchtrouble).

In the next sectionwe will shav the relation between
the SVM and statisticaltime seriesmodeling,in particular
autorgyressve modelsandthefourier transform.After that,
in section3, we will discussalternatve representationthat
wereusedin differentapplicationswith real-world data.Fi-
nally, section4 will presentnovel temporallearningtasks
which canbesolvedusingSVMs.

2. TIME SERIESMODELS

Usingthe phasespacemodelwith a linear predictionfunc-
tion leadsto the classof autorgressve (AR) models[2].

Obviously, AR modelscanbe learnedby a SVM with lin-

earkernel, so it doesnot surprisethat the SVM doesnot
performvery differenton datageneratedrom anAR model
thanothermethodgfor AR modelestimationJikethe Yule-
Walker equations However, it canbe seenthatthe SVM is

morerobustagainsboutliersin thedata. Thefollowing table
compareghe meanabsoluteerror of a AR modellearned
usingthe Yule-Walker equationsagainsta SVM model. In

thefirst case the datawasgeneratedrom an AR model,in

the secondcasel0% of outlierswereadded(validationset
resultsaveragedover 4 runswith differentmodels).

Data Tool | d=2  d=3 d=4 d=5
AR model AR | 0640 0.624 0.624 0.633
SVM | 0648 0634 0632 0.639
AR+outliers AR | 0942 00922 0919 0.911
SVM | 0885 0826 0.832 0.827

Fig. 1. Performancef AR andSVM model.

For time seriesanalysisin the frequengy domain, the
fourier transformationcan be usedto transformthe exam-
plesfor the SVM. Therealsoexist kernelfunction, which
malke this transformatiorexplicitly, e. g. thefourier kernels
proposedby Vapnikin [7], Ch. 11. or the time-frequenyg
kernelof Davy etal. [15].

3. TIME SERIESREPRESENTATIONSFOR
REAL-WORLD DATA

Time seriesmodelsare a well understoodresearcharea.
However, in practicewe seeover andover againthatmuch
datamanipulationhasto be donein orderto getgoodre-
sults. In this sectionwe will shav someexamplesof rep-
resentatiortricks thatcanbe usedwhenanalysingtime se-
rieswith SupportVectorMachines.The main advantageof
SVMsisthattherelevantequationghatdescribeéhegenere-
lization errorsof SVMs [7] do not dependon the dimen-
sionality of the databut only on the mamin of the separat-
ing hyperplanewhich makesthe SVM especiallysuitedfor
high-dimensionatiata. While this reasonings not strictly
valid - the margin depend®n the geometryof the dataand
hencealsoon thedimension empiricalevidenceshawv that
this propertyof SVMs doesholdin practice(seee.g.[16]).
This allows usto enhancéherepresenatiomwith certainat-
tributeswhich improve the temporalanalysisof the data.

Often, time seriescanbe decomposedhto a long-term
linear trend, a cyclical componentand a rest, where the
trend andthe cyclical componentare fitted beforethe ac-
tual analysisof the restis beingperformed. For the trend,
whenanalysingatime serieson thebasisof the phasespace
representatioandalinearkernel(i. e.usinganAR model),
we cansimply addthetime ¢ asanothemttributeto thedata.
By this,the SVM will learnafunctionw,z; +. ..+ wqxq+
wa+1t, I. e.it will automaticallydecide which effectsin the
datato attribute to the trend wg41t and which to the rest
modelwizy + - .. + wgxq.

The caseof cyclical componentss more complicated,
becausehey cannotbe aseasilyidentifiedandfilteredfrom
thedataasa simpletrend.But oftenthe mostdifficult prob-
lemin practiceis thatlots of statisticalprocedure$or mod-
eling periodic functions cannotbe applied, becausenhat
lookslike a periodiccomponengctuallyis notone. In Fig-
ure 2 you can seethe weekly salesof a certainitem in a
retail store.Onecaneasilyseethe effectsof christmassales
in the51standpreceedingveeksandalsothe lower effects
of eastesaledn the 12thweek.Onecaneasilyimaginethat
theseeffectswill occurperiodiceveryyearatthesametime.
Butthey don't! In someyearschristmads in the51stweek
of theyear, but in someit is alreadyin the 50thweek.Ona
daily time scalechristmaswill repeattself every 365days
in mostyears,but in 366 daysin aleapyear The dataof
the easterrcanvary aboutfive weeks.Thereforejn [17] 20
additionalbinary attributeswereusedto markthe presence
of holidays, specialsale promotions,and other significant
eventsin that particularweek. In the exampleof Figure2,
this reducedmeanabsoluteerror by morethan20% from
116.15 t0 91.063 (testerror over oneyear, averagedcover 4
differentstores).

Anothercaseof salestime seriesis shavn in Figure3.
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Fig. 2. Retail StoreSalesperWeek.

This time, the subjectare newspapersandthe salesarere-
portedon a daily basis. We canclearly seethat thereis a
cycle of 6 daysin the data(the newnspaperdoesnot appear
onsundayspndthatsalesareespeciallyhigh for theweek-
endeditionon saturdaysHence,insteadof usingthe phase
spaceaepresentationntheoriginal time serieswe canalso
reasonthat we have indeed6 differenttime seriesof sales
(onefor eachweekday)and usethe phasespacerepresen-
tationthere. And third, we canalsousea mixed represen-
tation wherewe usethe last couple of daysplus the last
coupleof weekdaydo predictthetime series.Testingthese
threerepresentationsye can seethat modelingonly one
time seriesachiezesa mediumabsolutetesterror of 8.102,
the approachwith 6 time serieshasan error of 5.942 and
themixedapproactreachesanerrorof 5.654.

Fig. 3. NewspapeiSalesperDay.

Sometimespestresultsare achieved if one dropsthe
ideaof atime seriesatall. For example for thetaskof rec-
ommendingdrug administrationfrom recordedvital signs
of intensie carepatients a high dimensionalnoisy classi-
ficationproblemon multivariatetime series it wasfoundin
[18] thatthe bestrepresentatiomvasto ignoretime depen-
denciescompletelyandmake a non-temporatlassification
basedon the last obeseration only. In the field of chro-
matographyRitthoff etal. [10] solvedthe problemof pre-
dicting certainchemicalcoeficientsbasednthechromato-
graphicalanalysisof a substancéwhich is a time seriesof

intensitiesof chemicalcomponentshy describingthetime
seriesby chosernanalyticalproperties.e. g. the location of
its maximum. Thatis, they did not usethe time seriesob-
senationsat all, but only new, aggrejatedfeatures. This
techniquealonereducedheerrorby 50%.

4. ADVANCED TEMPORAL LEARNING TASKS

The phasespacerepresenatiobasen the asumptiorthat
thetemporaldependencstructureof thetime seriescanbe
sufficiently capturedin a shortfinite window of obsena-
tions. This allows the examplesgeneratedrom eachwin-
dow to betreatedasif they weregeneratedndependently
andthus,the orderin which the examplesare presentedo
the learningalgorithmis not important. This assumption
fails, if the procesghat generateghe time serieschanges
over time. This scenariois called conceptdrift. Usually,
conceptdrift is treatedby usingonly a certainnumberof
the newestexampleswherethe actualnumberof examples
usedis chosenheuristically For SVMs, Klinkenbeg and
Joachimdq19] proposedan approachwherethis numberis
choserbasedn efficient performancestimatorgor SVMs
[20]. Thisapproachwasgeneralizedo weightedexamples
andmoreflexible waysof chosingtheexampledn thetrain-
ing setin [21].

Anotherinterestingproblemis the detectionof outliers
in time series.The proceduref Bauer[22] constructsacer
tain ellipse(derivedfrom anassumedutoregessie model)
aroundthe phasespacerepresentationf thetime seriesall
points outsideof this ellipseare delcaredasoutliers. This
procedurecanbegeneralizedy usinga SV estimation23]
of the supportof the pointsin the phasespace. This di-
rectly appliesthe definition of Davies and Gather[24] of
the a-outlier-region asthe region of pointswith the lowest
probability, sothatthe probabiltyof thewholeregionis a.

5. SUMMARY AND CONCLUSIONS

This papermpresente@ conciseoverview of time seriesanal-
ysis using SupportVector Machines. Of course,due to
spaceconstraintave couldnot coverall existingapproaches
in asmuchdetailasthey desered.

In conclusion,we find that the key to successfutime
seriesanalysiswith SVMs lies in finding the right represe-
nation. The excellentgeneralizatiorpropertieof the SVM,
especiallyits good performanceon high-dimensionatata,
make it easyto improveresultsby addingadditionaltempo-
ral featuresor constructingspecialisedkernelfunctions.
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