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ABSTRACT

Theanalysisof temporaldatais an importantissuein cur-
rentresearch,becausemostreal-world dataeitherexplicitly
or implicitly containssomeinformation about time. The
key to successfullysolving temporal learning tasksis to
analyzethe assumptionsandprior knowledgethat can be
madeaboutthe temporalprocessof the learningproblem
and find a representationof the dataanda learningalgo-
rithm thatmakeseffectiveuseof thisknowledge.Thispaper
will presenta conciseoverview of the applicationof Sup-
port Vector Machinesto different temporallearningtasks
andthecorrespondingtemporalrepresentations.

1. INTRODUCTION

Thereis a multitude of learningtasksrelatedto temporal
phenomenaand,correspondingly, therearemany possible
representationsfor temporaldata.Learningtasksandrepre-
sentationsarecloselyrelated:theNo FreeLunchTheorem
[1] impliesthatfinding anadequatelybiasedrepresentation
canmakea hardlearingproblemeasy(and,vice versa,that
finding this representationitself is hard).

Statisticaltime seriesanalysishasdevelopedtwo big
classesof representations,namelythosein thetimedomain
andthosein thefrequency domain[2]. Analysisin thetime
domainis basedon thecorrelationbetweenthecurrentand
previousobservations,while the frequency domaintries to
decomposethetime seriesinto cyclic componentsatdiffer-
entfrequencies.For learningtasks,time seriesanalysishas
the following objectives : description(to describea time
seriesby certainstatistics),explanation(to understandthe
processbehinda time series),prediction(to predictfuture
valuesof the time series)andcontrol (control the process
behindthetimeseriesto generatecertainfuturevalues).

For MachineLearning,an overall theory of temporal
analysisis much lessdeveloped. Learningtasksare usu-
ally takenfrom specificreal-world problemsandrepresen-
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tationsareoften constructedad hoc. Morik [3] differenti-
atesbetweentwo differentaspectsof time, thelinearprece-
denceof eventsandimmediatedominanceof temporalcat-
egories. Thesetermsoriginatefrom naturallanguagethe-
ory [4]. Immediatedominancerefersto theconstructionof
higher-level categoriesof thetime-dependentelements,ex-
emplarylearningtasksbasedon the conceptof immediate
dominancearethediscoveryof frequentepisodes[5] or first
orderlogic learningbasedon Allen’s interval relations[6].
The aspectof linearprecedencerefersto the linear tempo-
ral orderof the singleeventsandis mostprominentin the
framework of time seriesanalysis.

The focus of this paperlies on the time seriesrepre-
sentationandthetypesof learningtasksthatcanbesolved
with supportvector machines(SVMs, [7]). Supportvec-
tor machineshave beenappliedto very differentkinds of
learning problems,for example to time seriesprediction
by Mukherjeeet al. in [8] andby Müller et al. in [9]. A
regressionproblem for time serieshas beensolved with
SVMs in [10], wherecertaincoefficientsof chemicalcom-
ponentshavebeenpredictedfrom chromatographytimese-
ries. Changet al. [11] have presentedanapproachfor time
seriessegmentationwith SVMs.

All of theseapplicationsarebasedon a singletime se-
riesrepresentation,thephasespacerepresentation,i. e.cre-
atingd-dimensionalexamplesbymovingawindow of length
d over thetime series.Thetheoreticalfoundationfor this is
thetheoremof Takens[12, 13] whichstatesthatfor dynami-
calsystemsof acertaintype,thephase-spacereconstruction
andtheunobservedinternalstructureof thesystemaretopo-
logically identical,giventheembeddingdimensionis large
enough.At first glance,thisseemslike theperfecttool: We
know thatwecanfind outall weneedto know abouta time
seriessimply by lookingat largeenoughtime windowsand
in theSVM wehavealearningalgorithmthatis well known
to performwell on high-dimensionaldata.But this conclu-
sion is fallacious. First of all, Taken’s theoremdoesonly
hold for dynamicalsystemswhich canbedescribedby dif-
ferentialequationsof a certainform. Generally, onecannot
decidewhetherthis is the casefor a given real-word data
set. Second,the theoryof structuralrisk minimization[7],
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onwhichtheSVM is based,is only formulatedfor indepen-
dent,identicallydistributeddata.Clearly, theindependence
assumptionis violatedfor time seriesdata. Although ver-
sionsof thecentraltheoremsof structuralrisk minimization
do alsohold for dependentdataof weakdependencestruc-
ture [14] and in practice,SVMs have beenshown to per-
form quite well on time seriesdata,oneshouldbe careful
to transferresultsof theSVM to this typeof data.Finally,
even if the premisesof Taken’s theoremandthe structural
risk minimizationprincipledo hold, a differentrepresenta-
tion of the datamay lead to a much easiergeneralization
(it is the“largeenoughdimension”-partof Taken’s theorem
thatcancausemuchtrouble).

In the next sectionwe will show the relation between
the SVM andstatisticaltime seriesmodeling,in particular
autoregressivemodelsandthefourier transform.After that,
in section3, we will discussalternativerepresentationsthat
wereusedin differentapplicationswith real-world data.Fi-
nally, section4 will presentnovel temporallearningtasks
which canbesolvedusingSVMs.

2. TIME SERIES MODELS

Usingthephasespacemodelwith a linearpredictionfunc-
tion leadsto the classof autoregressive (AR) models[2].
Obviously, AR modelscanbe learnedby a SVM with lin-
ear kernel, so it doesnot surprisethat the SVM doesnot
performverydifferentondatageneratedfrom anAR model
thanothermethodsfor AR modelestimation,like theYule-
Walker equations.However, it canbeseenthat theSVM is
morerobustagainstoutliersin thedata.Thefollowing table
comparesthe meanabsoluteerror of a AR model learned
usingtheYule-Walker equationsagainsta SVM model. In
thefirst case,thedatawasgeneratedfrom anAR model,in
thesecondcase10%of outlierswereadded(validationset
resultsaveragedover4 runswith differentmodels).

Data Tool d=2 d=3 d=4 d=5
AR model AR 0.640 0.624 0.624 0.633

SVM 0.648 0.634 0.632 0.639
AR+outliers AR 0.942 0.922 0.919 0.911

SVM 0.885 0.826 0.832 0.827

Fig. 1. Performanceof AR andSVM model.

For time seriesanalysisin the frequency domain, the
fourier transformationcanbe usedto transformthe exam-
plesfor the SVM. Therealsoexist kernel function, which
make this transformationexplicitly, e.g. thefourier kernels
proposedby Vapnik in [7], Ch. 11. or the time-frequency
kernelof Davy et al. [15].

3. TIME SERIES REPRESENTATIONS FOR
REAL-WORLD DATA

Time seriesmodelsare a well understoodresearcharea.
However, in practicewe seeover andover againthatmuch
datamanipulationhasto be donein order to get goodre-
sults. In this sectionwe will show someexamplesof rep-
resentationtricks thatcanbeusedwhenanalysingtime se-
rieswith SupportVectorMachines.Themainadvantageof
SVMsis thattherelevantequationsthatdescribethegenere-
lization errorsof SVMs [7] do not dependon the dimen-
sionalityof the databut only on themargin of theseparat-
ing hyperplane,whichmakestheSVM especiallysuitedfor
high-dimensionaldata. While this reasoningis not strictly
valid - themargin dependson thegeometryof thedataand
hencealsoon thedimension- empiricalevidenceshow that
this propertyof SVMs doeshold in practice(seee.g. [16]).
This allowsusto enhancetherepresenationwith certainat-
tributeswhich improvethetemporalanalysisof thedata.

Often, time seriescanbedecomposedinto a long-term
linear trend, a cyclical componentand a rest, where the
trend and the cyclical componentarefitted beforethe ac-
tual analysisof the rest is beingperformed.For the trend,
whenanalysingatimeseriesonthebasisof thephasespace
representationanda linearkernel(i. e.usinganAR model),
wecansimplyaddthetime

�
asanotherattributeto thedata.

By this,theSVM will learnafunction ���������
	�	�	
�����������
������� � , i. e.it will automaticallydecide,whicheffectsin the
datato attribute to the trend ������� � andwhich to the rest
model ����������	�	�	���������� .

The caseof cyclical componentsis morecomplicated,
becausethey cannotbeaseasilyidentifiedandfilteredfrom
thedataasasimpletrend.But oftenthemostdifficult prob-
lem in practiceis thatlotsof statisticalproceduresfor mod-
eling periodic functionscannotbe applied,becausewhat
lookslike a periodiccomponentactuallyis not one.In Fig-
ure 2 you canseethe weekly salesof a certainitem in a
retail store.Onecaneasilyseetheeffectsof christmassales
in the51standpreceedingweeksandalsothelower effects
of eastersalesin the12thweek.Onecaneasilyimaginethat
theseeffectswill occurperiodiceveryyearatthesametime.
But they don’t! In someyears,christmasis in the51stweek
of theyear, but in someit is alreadyin the50thweek.On a
daily time scale,christmaswill repeatitself every 365days
in mostyears,but in 366 daysin a leapyear. The dataof
theeasterncanvaryaboutfiveweeks.Therefore,in [17] 20
additionalbinaryattributeswereusedto markthepresence
of holidays,specialsalepromotions,andothersignificant
eventsin thatparticularweek. In theexampleof Figure2,
this reducedmeanabsoluteerror by more than ����� from���� 	 ��! to " � 	 �  $# (testerrorover oneyear, averagedover 4
differentstores).

Anothercaseof salestime seriesis shown in Figure3.

IV - 865

➡ ➡



0

200

400

600

800

1000

1200

1400

10 20 30 40 50

Fig. 2. RetailStoreSalesperWeek.

This time, the subjectarenewspapersandthe salesarere-
portedon a daily basis. We canclearly seethat thereis a
cycle of 6 daysin thedata(thenewspaperdoesnot appear
on sundays)andthatsalesareespeciallyhigh for theweek-
endeditionon saturdays.Hence,insteadof usingthephase
spacerepresentationontheoriginal timeseries,wecanalso
reasonthat we have indeed6 differenttime seriesof sales
(onefor eachweekday)andusethe phasespacerepresen-
tation there. And third, we canalsousea mixedrepresen-
tation wherewe usethe last coupleof daysplus the last
coupleof weekdaysto predictthetimeseries.Testingthese
threerepresentations,we can seethat modelingonly one
time seriesachievesa mediumabsolutetesterrorof %�	 � �$� ,
the approachwith 6 time serieshasan error of

! 	 "�&�� and
themixedapproachreachesanerrorof

! 	  $! & .
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Fig. 3. NewspaperSalesperDay.

Sometimes,best resultsare achieved if one dropsthe
ideaof a time seriesat all. For example,for thetaskof rec-
ommendingdrug administrationfrom recordedvital signs
of intensivecarepatients- ahighdimensional,noisyclassi-
ficationproblemonmultivariatetimeseries- it wasfoundin
[18] that thebestrepresentationwasto ignoretime depen-
denciescompletelyandmake a non-temporalclassification
basedon the last obeservation only. In the field of chro-
matography, Ritthoff et al. [10] solvedtheproblemof pre-
dictingcertainchemicalcoefficientsbasedonthechromato-
graphicalanalysisof a substance(which is a time seriesof

intensitiesof chemicalcomponents)by describingthetime
seriesby chosenanalyticalproperties,e. g. the locationof
its maximum. That is, they did not usethe time seriesob-
servationsat all, but only new, aggregatedfeatures. This
techniquealonereducedtheerrorby

! �'� .

4. ADVANCED TEMPORAL LEARNING TASKS

Thephasespacerepresenationbaseson theasumptionthat
thetemporaldependencestructureof thetime seriescanbe
sufficiently capturedin a short finite window of observa-
tions. This allows the examplesgeneratedfrom eachwin-
dow to be treatedasif they weregeneratedindependently
andthus,theorderin which theexamplesarepresentedto
the learningalgorithm is not important. This assumption
fails, if the processthat generatesthe time serieschanges
over time. This scenariois calledconceptdrift. Usually,
conceptdrift is treatedby usingonly a certainnumberof
thenewestexamples,wheretheactualnumberof examples
usedis chosenheuristically. For SVMs, Klinkenberg and
Joachims[19] proposedan approachwherethis numberis
chosenbasedonefficientperformanceestimatorsfor SVMs
[20]. This approachwasgeneralizedto weightedexamples
andmoreflexible waysof chosingtheexamplesin thetrain-
ing setin [21].

Anotherinterestingproblemis thedetectionof outliers
in timeseries.Theprocedureof Bauer[22] constructsacer-
tain ellipse(derivedfrom anassumedautoregessivemodel)
aroundthephasespacerepresentationof thetime seriesall
pointsoutsideof this ellipsearedelcaredasoutliers. This
procedurecanbegeneralizedby usingaSV estimation[23]
of the supportof the points in the phasespace. This di-
rectly appliesthe definition of Davies and Gather[24] of
the ( -outlier-region astheregion of pointswith the lowest
probability, sothattheprobabiltyof thewholeregion is ( .

5. SUMMARY AND CONCLUSIONS

Thispaperpresentedaconciseoverview of timeseriesanal-
ysis using SupportVector Machines. Of course,due to
spaceconstraintswecouldnotcoverall existingapproaches
in asmuchdetailasthey deserved.

In conclusion,we find that the key to successfultime
seriesanalysiswith SVMs lies in finding the right represe-
nation.Theexcellentgeneralizationpropertiesof theSVM,
especiallyits goodperformanceon high-dimensionaldata,
makeit easyto improveresultsby addingadditionaltempo-
ral featuresor constructingspecialisedkernelfunctions.
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[23] BernhardScḧolkopf, RobertC. Williamson, Alex J.
Smola, and JohnShawe-Taylor, “SV estimationof
a distribution’s support,” in Neural InformationPro-
cessingSystems12, S.A. Solla,T.K. Leen,andK.-R.
Müller, Eds.2000,MIT Press.

[24] LaurieDaviesandUrsulaGather, “The identification
of multiple outliers,” J. Am.Statist.Ass., vol. 88, pp.
782–792,1993.

IV - 867

➡ ➠


