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ABSTRACT 2. KERNEL METHODS

Recently introduced in Mlachine Learning, the notion'of ker- Many algorithms for data analysis are based on the assump-
nels has drgwn a lot of.|nterest as.|t allqws to obtain non- tion that the data can be represented as vectors in a finite
linear a'go”Fh”?S fro”ﬁ Imegr ones In agmple gnd elegant yinensional vector space. These algorithms, such as lin-
manner. Th'.s' n conjunction with the introduction of new ear discrimination, principal component analysis, or least

linear classification methods such as the Support Vector Ma’squares regression, make extensive use of the linear struc-

chines has produced significant progress. The successes C{Lre. Roughly speaking, kernels allow to naturally derive
such algorithms is now spreading as they are applied to non-linear versions of them

more and more domains. Many Signal Processing prob-
lems, by their non-linear and high-dimensional nature may .
benefit from such techniques. We give an overview of ker- 2.1. TheKernel Trick

nel methods and their recent applications. The general idea is the following. Given a linear algorithm

(i.e. an algorithm which works in a vector space), one first
1. INTRODUCTION maps the data living in a spaééto a vector spaceé{ (the
feature spacgvia a non-linear mag® : X — 7, and then
Kernel-based algorithms have been recently developed inruns the algorithm on the vector representatiqs) of the
the Machine Learning community, where they were firstin- data. In other words, one performs non-linear analysis of
troduced in the Support Vector Machine (SVM) algorithm  the data using a linear method.
[1]. There is now an extensive literature on SVM [2, 3] One of the purposes of the mdpis to translate non-
and the family of kernel-based algorithms [4]. The attrac- linear structures of the data into linear one$4nAs an ex-
tiveness of such algorithms stems from their elegant treat-ample, consider the following discrimination problem (see
ment of non-linear problems and their efficiency in high- Figure 1) where the goal is to separate two sets of points. In
dimensional problems. the input space, the problem is non-linear, but after applying

They have allowed considerable progress in Machine the transformatio® which maps each vector to the three
Learning and they are now being successfully applied to monomials of degre2 formed by its coordinates, the sepa-
many problems. ration boundary becomes linear. The gain of introducing the

Itis clear that many problems arising in Signal Process-
ing are of statistical nature and require automatic data anal-
ysis methods. Moreover there are lots of non-linearities so
that linear methods are not always applicable. Finally, the
data is not always in vectorial form but is often sequential.
All these reasons make kernel methods particularly suited
for signal processing applications.

Another aspect is the amount of available data and the
dimensionality. One needs methods that can use little data
and avoid the curse of dimensionality. This is what Vapnik's
approach aims at [2] and explains why using kernel methods Fig. 1. Effect of the mapb (z1, z2) = (2%, v2z1 22, 73)
and Vapnik's ideas may allow to efficiently handle data from
signal processing problems. map® is not obvious yet. Indeed, we have just transformed

(a) Input spaceX (b) Feature spacH
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the data and we hope that in the new representation, linear3.1. Support Vector M achines

structures will emerge. However, we may need to add a lot
of dimensions to really make this happen and it may be hard

to 'guess’ the rightb.

Here is where the so-called kernel comes into the game.

We shall first restrict ourselves to algorithms that work in

vector spaces endowed with an inner product. In this case

® has to map the input space to a Hilbert space.
If in the execution of the algorithms, only inner prod-

ucts between data vectors are considered, i.e. the data ap-

pears only in expressions liK@(x), ®(x’)), we can make
use of the fact that for certain specific mapshis inner
product can be computed directly frornandx’ without
explicitly computing®(x) and®(x’). This computational
trick is termed the 'kernel trick’. More precisely, a kernel
is a symmetric function of two variables that satisfies the
following condition: for alln € N, and allxy,...,x, €

X, the kernel matrix, i.e. the matrix whose elements are
k(x;,x;) is positive semi-definite. The main property of
functions satisfying this condition is that they implicitly de-
fine a mappingd from X’ to a Hilbert spacé such that
k(x,x") (®(x), ®(x')) and can thus be used in algo-
rithms using inner products, introducing non-linearities via
a straightforward modification.

2.2. Kerne Design

Because they correspond to inner products in some space,
kernels can be considered as measures of similarity between

two data points. Many different types of kernels are known

[4] and among them, the most widely used are those operat-

ing on finite-dimensional vectors. For example the function
k(x,x") = (x,x') trivially defines a kernel called tHamear
kernel Another example is the polynomial kernel of degree
d, defined as(x,x') = (a + (x,x'))?. Also the so-called
Gaussian kernel with width, defined

k(x,x') = exp(—[lx = x'||?/20%),

is very useful in practice. However, kernels are not limited

The SVM algorithm is used to perform binary classification
(y; € {—1,1}). Theidea s to construct, in the feature space
‘H, a linear decision function from the hyperplane with max-
imum margin, i.e. which is at maximum distance from all
the data points and classifies them correctly (see Figure 2).
"This corresponds to looking for a normal vectoand a pa-

Fig. 2. Maximal margin hyperplane

rameterh corresponding to the hyperplane whose equation
isw - ®(x) + b = 0. The maximum margin hyperplane is
obtained by minimizind|w]||? under constraints of correct
classification of the data, i.ey;(w - ®(x;) +b) > 1. It
can be shown that the solution is obtained by solving the
following dual problem (see e.g. [3] for details)

n

1

max E o — —

o )
i=1

under constrainta; > 0. Using the extra constraint; <

C' vyields thesoft-marginSVM which allows some of the
training data to be misclassified (for a more robust solution).
Interestingly enough, this algorithm has an interpretation as
a regularized optimization problem

n
Z aiayyk(xi, x;5)

ij=1

%iﬁizzlmax(l — £(x:)yi,0) + A FII? 1)

where? is the space of functions generated by the kernel.

to vector spaces and can be defined on graphs, on sequences, e |inear discrimination algorithms can be performed

on groups, etc. (see [4]). This is a key feature of kernels:
they allow to work in a simple (linear) way on data of vari-
ous types (discrete or not, fixed or variable length).

3. KERNEL BASED ALGORITHMS

We will present two kinds of learning algorithms. The first

ones, supervised learning algorithms, take as an input a set

of labeled example$x1,y1), .. ., (Xn,y») Wherex; are in
someinput spaceY’ andy; are typically inR,, and they pro-
duce as an output, a functigh: X — R which (hopefully)
is able to predict the label of new examplex. The sec-
ond ones, work on unlabeled examplgs Only) and try to
describe the structure of the data (e.g. its distribution).

implicitly in feature space, such as Fisher discriminant anal-
ysis [5]. Also, other cost functions can be used in (1), such
as the squared erréf (x;) — y;)?, yielding the kernel ridge
regression algorithm which can be used to estimate a real-
valued function.

3.2. Unsupervised Learning Algorithms

Principal Component Analysis (PCA) looks for directions
of largest variance in the data. It turns out that PCA can be
implicitly performed in feature space yielding kernel-PCA
[6]. Figure 3 shows a toy example where PCA is performed
both in the linear input space and in the feature space pro-
duced by the polynomial kernel. The result of kernel PCA
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linear PCA— K(xy) = (x) proposed [12] to incorporate the SVM into the HMM de-
L0 cision process [12], to be able to process the voice as it is
generated but at the same time make the decisions accord-
ing to the maximum margin principle that will ensure best
separability under any density model.
kemel PC/ k() = (cy)? Channel equalization and estimation is one of the key
g issues in digital communication because it involves linear
and non-linear distortions and in many situations the train-
ing sequence need to be short in order not to reduce the
payload bits. Indeed, communication channels introduce
inter-symbol interference, i.e. each transmitted symbol is
spread between some contiguous received symbols. There-
fore a linear transversal filter, that contains several consec-
is to extract non-linear components which describe the non- Utive symbols, is used to estimate the incoming symbol.
ellipsoidal shape of the data cloud. Legst squares regression is frequently used to_ compute the
weights of these filters. SVMs has been used with great suc-

so-callecone-classSVM whose goal is to estimate the sup- cess over non-linear channels directly using linear and non-

port of the data distribution. It works by applying a variant linear kernels with very short training sequences [17] and
of the SVM algorithm with ally; set tol. The resultisa  SOMe modifications using hidden Markov models have been

fIso proposed [18]. One of the challenging issues in equal-
ization is that the channel does not need to be stationary, so
that the decision function has to change over time, without

necessarily receiving a new training sequence. The SVM

signal processing have been recently extended to the non-ﬂas been |n|t|all>|/ proposed f'c;.r ""fd' trammg sgmple, and
linear case via kernels. These include Vector Quantization '@S Subsequently been modified for time varying commu-

[8], Independent Component Analysis [9, 10] and Canoni- nication channels by incorporating prior information about
cal Correlation Analysis [11] the time evolution of the channel in the cost function and

margin [19].
An important feature of audio signals is that they carry
4. SIGNAL PROCESSING APPLICATIONS information over time, which means that their amplitude at a
given moment is less meaningful than the variations of this
Kernel methods have been applied to several signal processampiitude in time. It is thus of crucial importance, when
ing and communications problems. Some of them are di- applying data analysis techniques to signals, to represent
rect application of the standard SVM algorithm for detec- them in an appropriate way. An approach based on kernels
tion or estimation and others incorporate prior knowledge defined on time frequency representations (TFR) has been
into the learning process, either using virtual training sam- proposed [21] and promising results for signal classification

lem. The applications include speech and audio processing

(speech recognition [12], speaker identification [13], extrac-
tion of audio features [14], audio signal segmentation [15]),
image processing (face detection and recognition [16], im- A large number of kernel methods applications to Signal
age coding [8]) and communications (channel equalization Processing involve the use of the standard SVM algorithm
[17, 18], non-stationary channel models [19], multi-user de- with a Gaussian kernel applied to a vector representation of
tection [20], signal classification [21]). This list is not ex- the data.

haustive but shows the diversity of problems that can be  This surely yields a flexible and efficient method for
treated by the techniques presented in previous sections. classification. Indeed, the algorithm is simple, can be ef-
ficiently implemented and has few parameters (unlike e.g.
neural networks). Moreover, the maximum margin prin-
ciple allows to reduce the effective dimensionality of the
Speech recognition has been usually solved applying Hid- problem, making generalization possible even with limited
den Markov Models (HMM) trained using maximum like- data. Finally, the fact that this method directly addresses the
lihood estimates. The limitation of the approach is that the classification problem makes it really efficient in high di-
probability density function of the models is unknown and mensions compared to density estimation based approaches.
making assumptions about it can be difficult. It has been This last remark is at the heart of Vapnik’s philosophy and

Fig. 3. Linear vs. kernel PCA

Another type of unsupervised learning algorithm is the

non-linear boundary that encloses the data (or a prescribe
fraction of the data). An important application is the prob-
lem of outliers or novelty detection [7].

Finally other types of algorithms that are often used in

4.2. Discussion and Per spectives

4.1. Examples
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has been fully demonstrated in applications such as speakefl1]
recognition [22] where previous approaches were based on
probabilistic speaker models trained from the data. The
guideline is thus: apply classification algorithms whenever
possible.

So the easy things (proper reformulation of the problems [13]
and use of standard techniques) have been done, but now the
focus should be on the kernels themselves which can really
make a difference if correctly designed. Promising direc-
tions include the development of kernels for sequences or[ 4]
incorporating invariances [23] with respect to information-
preserving signal transformations.

[12]

[15]
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