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ABSTRACT Wireless sensor networks use low duty cycles, ie. low percent-
age of device ‘on’ time, on the order of 0.01% to 1%, allowing cir-
cuits to remain in a sleep state the vast majority of the time. When
hecessary, a device wakes up its sensor, processor, transmitter or
receiver in order to sense, process, receive or transmit a message.
Each wake-up consumes significant energy. Specifically, for the

. . ; transmitter circuitry, it has been reported that there is a tradeoff
a threshold, it is sent to the next higher level sensor. A simple Y. n

. . etween the time required for (and thus energy expended during)
feedback scheme is also considered. We study the performance c.’(?vake-up and the energy used during sleep mode [5]. Due to the

a Gaussian change-of-mean detection system using this hierarchir : ;
cal censoring scheme, with and without feedback. We show thatIarge percentage of time spent in sleep mode, sleep mode energy

ood detection performance can be achieved while significantl is minimized, and as a result, wake-up energy s high. It has also
9 . P o > SI9 Y been reported that wake-up energy can be significantly higher than
reducing sensor transmissions compared to the optimal detectio

system The energy used during transmission [7].
) Much distributed detection research has focused on capacity-

constrained networks. Research has addressed quantization of sen-

1. INTRODUCTION sor data [8] and exploiting source correlation [9] to reduce sensor
bit rate. In particular cases, it has been shown that fBrsensor

Large-scale wireless sensor networks are envisioned to monitoretwork with a capacity constraint &t bits per unit time, having

wide environments without network management for long life- each sensor send one bit is optimal [10].

times. Many example applications, such as temperature and VOC  However, from the perspective of energy, the cost of transmit-

agricultural fields, and detection of intruders across borders, in- gynchronization and id bits. Considering all energy costs in an en-

sensors has been studied extensively in the literature [1][2]. This only marginally less energy than sending several bits. In fact, it

paper applies a distributed detection framework to wireless sensorcan pe argued that the appropriate constraint to bound energy con-

networks, which have the peculiarities of being energy-constrained symption for many wireless sensor networks is the probability of

to a hierarchical topology and a “censoring sensors” [3] strategy. sensor's decision regarding whether or not to transmit its data is a
We present analysis of censoring in a hierarchical topology and |ocal decision based on its LLR [3].

suggest a simple feedback scheme. Finally, we show numerical
results for a Gaussian change-of-mean detection system with an . .
without the feedback scheme. dl'z' Hierarchical Networks

In energy-limited wireless sensor networks, detection using ‘cen-
soring sensors’ reduces the probability that a sensor must transmit
thereby saving energy. In this paper, we introduce a hierarchi-
cal distributed detection scheme designed specifically for multi-
hop networks. If a sensor’s local likelihood ratio (LLR) crosses

In wireless sensor networks, due to devices’ limited range, com-

1.1. Energy Constraint munication to a fusion center must be routed through intermediate

. . L devices in the network. Multi-hop is used for energy-efficiency
Energy is of primary concerniin er.eless sensor networks [4][5][6]- 4nd reduced device cost. If required transmit powelr/r, where
In most applications, the bit rate is very low, often less than one ,. i the path length, then total transmit energy is decreased by us-
bit per second [5], and the bandwidth is wide. |C costs will fall 4 mytiple short hops. Network-wide power savings in multi-
with Moore’s law, however, battery costs will remain relatively 5 gystems can be significant, especially for large-scale networks
constant, thus energy will become an increasing fraction of the \yhen "reception energy costs are small compared to transmission
sensor cost. Economical deployment of thousands of sensors Willy,ts Technology scaling should reduce receiver energy consump-
require aggressive energy limitation. Equivalently, given a battery o, ‘\yhile transmission costs will remain constant [5]. This pro-

size, minimizing energy consumption maximizes system lifetime. jo ion underscores the importance of both multi-hop and mini-
If energy consumption can be sufficiently reduced, solar power or mizing the probability of transmission.

energy-mining can be used to power each sensor [S]. The use of multi-hop in wireless sensor networks can also be

This material is based in part upon work supported under a NSF Grad- €xploited for improved detection performance. Often, distributed
uate Research Fellowship. detection literature assumes that all sensor data is sent to a fusion
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center. Rather than simply relaying messages to a fusion center, infevel 1 have no children. The constantis the effect on the LLR
termediate nodes can perform data aggregation and make local deef a non-transmitting child node,
cisions, preventing a bottleneck at the fusion center. Furthermore, _
feedback has been suggested to enable sensors to make reliable ¢ = Pi(Lr,i € Ifi)_ 3)
decisions on certain events [12]. In this paper, we consider a hier- Po(LF,i € Ry)
archical or 'spanning tree’ topology (eg., Fig. 1) for the purposes
of censoring and feedback.

We focus on the case where wireless sensor networks oper- Hy
ate in weak signal environments, i.€(H,) is low. High P(H1) lri=l,+ Z lpj+ Z loge; 2 log (4)
applications are typically incompatible with low-duty cycle oper- JER; JER; Ho
ation. Thus we constrain the average probability of sensor trans-
mission givenHy, and then optimize detection performance.

In terms of log-likelihoodsr,; = log Lr,; andl; ; = log L; ;,

Let the density of »; andl; ; be given byfr; and f; ;, respec-
tively. Then fr; can be seen as a mixture pdf. This is derived
explicitly for a binary tree in Section 2.2.

2. DERIVATION OF HIERARCHICAL CENSORING

2.1. Using Feedback
In a hierarchical network oV sensors, we denoté;, as the set of
sensors on level of the hierarchyk = 1... M (eg.,G> = {3,6}
in Fig. 1). Each sensor (except for the fusion center) has a paren
node. We denote the set of children of nades K;. At a given
round of sensing, a sensor records data We assumeX; are
i.i.d. conditional on the hypothesi;, j = 0, 1.

Censoring sensors was presented in [3] and [13]. The hierar-
chical version presented here expands censoring to multiple layer
of sensors with feedback. Each sensor forms its LLR; from
both its own dataX; and the LLRs of its children. Thé" sub-
script denotes thak . ; is a fusion of data not only from sensor
but also its children. If. 7 ; falls in a send regionR;, then sensor
1 sends its LLR to its parent. Since the number of data bits is not
constrained, we can assume for analysis that the real-valued LLR
is sent to the parent unquantized [3]. If the LLR falls in the no- 1 N
send regionR;, sensor; doesn't transmit, and its silence is used N1 Z #{Ki}Po[ U Lp; € Rj] <p<1l, (5
as information by its parent. Define the constrairas the mean T =1 JEK;
probability of sensor transmission givéfy,

In this paper, we test a simple feedback scheme in which a device
tIistens for transmissions from its ‘siblings’ (sensors with the same
parent). If one sibling transmits its LLR to the parent, then all
of the other siblings also transmit their LLRs to the parent. This
scheme doesn't require the parent to transmit back to its children
to request feedback. Although feedback from the parent could in-
clude more information than feedback from a sibling, analyzing
%his basic scheme helps to determine when feedback is valuable.
To achieve the same probability of transmission as without
feedback, the thresholdsof the LLRTs must be reduced. Egs. (2)-
(4) are still valid, but nowg; = K; if Lr,; € R;,Vj € K;, or
R; = 0 otherwise. Similarlyx; = K; N (7:)€. If #{K;} is the
number of children of sensaythe constraint becomes,

2.2. Binary Tree Simplification

1 N
N —1 2 PO[LF,’L S R’L] S P S 1. (1) Jevel 3 @ root
i#FC
Here, F'C is the index of the highest level sensor (7 in Fig. 1). Its 2 6, children of {7}
false alarm rate is the glob&l- that directly determines detection
performance, and is constrained independently of the energy con- 1 5) children of {3, 6}
straint. In this paper we usk; to indicate the probability given /
H;, forj = {0,1}. 3-node case

In [3], the optimal censoring region was shown to be a single ) ) )
interval, R = [v;,7;). Moreover, in cases where the prior prob- Fig. 1. Diagram of an ex_ample hierarchical network of sensors.
ability of H is sufficiently small and limited communication is ~Subset of sensorgl, 2,3} is also used as an example.
allowed, it is optimal to set; = 0. Sufficient conditions for the
optimality of ; = 0 are given in [13]. In this analysis, we assume Assume thatN sensors are arranged in a binary tree as the
v; = 0 because of the assumptions BiH) and limited trans- N = 7 case shown in Fig. 1. We simplify the parameter space by
mission probability detailed in Section 1. Thus the optimal fusion assuming that the thresholds for sensors on Iévate identical.
rule for sensor’s decision whether or not to transmit is a local We letPrr (k) be the probability of false transmission from a sen-
likelihood ratio test (LLRT) with threshold;, sor on levelk. Without feedbackPrr (k) = Po[Lr, € R;], for

anyi € Gy. In the feedback cas®rr (k) =1— (1 — Po[LF,; €

. : H . H m 2 R;])?, for anyi € G%. The constraint from (1) is now,
Fi = Ll Fj X Cj Ti
’ JER; ’ JER; ’ ;0 1 = M—k
whereL; ; is the likelihood ratio based only on the daxa, the k=1
setsw; = {j € Ki : Lr; € R;} andk; = {j € Ki : Lr; € The density of sensafs LLR given H; can be shown to be,
R;} are the subsets df; which send, and do not send their LLR,
respectively. Note that for € G1, Lr,; = L,;; Since sensors on [riia; = €ogoim; + €191)m; + €292)m; (7)
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whereey, is the probability thak children of sensoi have LLRs

in the send region, angk x, is the density of thér; given I
and givenk children have LLRs in the send region. The binomial
probability e, is,

k

€k = <2> [Pi(lru € Ru)]k[PJ'(va“ eRrR)Y @

whereu € K;. The densitieg #, of (7) can be calculated via
convolution. DefiningS., = {lr. € Ru} andS, = {lpu €
R.}, the densities of ., conditioned onf; andS,, or S, are,

FruH; (t)
frum,s.(t) = Pj(zp,uéRu—) te I?u 9)
0 te R,
0 0 te R,
fF,u|H-,§u t == fF,u\H'(t) = (10)
’ Flracha | € P
In the case without feedback, the densigegy, (t) are,
oy, () Jiim, (t — 2log cu) (11)
guya; () Jiam,; (t —logcu) * frum, s, (t)
g1, () = fram; () x frum;,s, () * frum;,s, (),

wherex indicates convolution. Note th@bmj (t) is the Ji,im,
density convolved twice with the density in (9), since it represents
the density of the sum of sensis own LLR and the LLRs of two
children given both send their data.
In the feedback case, it can be shown that (11) holds except

thatg, x, (¢) is replaced by,

9111, (8) = frim; (O * frumg,s, () * frum;s, @) (12)
In this caseg|u, (t) is the fuilH; density convolved with both
densities in (9) and (10) since it represents the density of the sum
of sensor’s own LLR and the LLRs of two children given exactly
one child with LLR in the send region. Derivations of analyti-
cal results for highV are complicated by multiple convolutions
with (9) and (10). Approximations exist for Gaussian data, but for
brevity, we report numerical results.

3. NUMERICAL RESULTS
Consider the Gaussian change-of-mean detection system,

Ho : Xi NN(0702)

13
Hy: Xi ~ N(p,0?) (13)
In this example, the log-likelihood for sensor daa,
M
ll,z — 0_2 X'L 20_2 ) (14)

is also Gaussian. In this sectign= 1 ando? = 1 are used.

First, consider the 3-sensor hierarchy shown as a sub-tree in
Fig. 1. We set the thresholds on level 1 to achieve a given prob-
ability of false transmission for sensors 1 andp2= Prr(1).

We calculate via Matlab the densitigs z; (t) by sampling the re-
quired densities in (11) and (12) and using numerical convolution.
The weights;, are calcalated from (8), and then (7) is used to find
the densities of the LLR at sensor f3; 3,1, and fr 3| #, -
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Fig. 2. ROCs for 3-sensor example (a) without feedback and (b)
with feedback. Plots show the optimal 1 and 3-sensor ROC and
the hierarchical ROC fop = 0.30, 0.15, 0.05, 0.02, and 0.01.

These densities are used to calculéte and Pp, and the
ROCs of the final decision are shown in Fig. 2 for cases with
and without feedback. Valugs = Ppr(1) = 0.30, 0.15, 0.05,
0.02, and 0.01 are shown. Optimal 3-sensor and 1-sensor cases
are shown as bounds on the system performance. Note that with
p = 0.30, there is a 70% reduction in transmission undgy,
but the detection performance remains close to optimal, especially
at low Pr. Even with the two level 1 sensors transmitting only
1/100 of the time, performance is significantly better than with
only one sensor. Comparing Figs. 2(a) and 2(b), feedback allows
performance closer to 3-sensor optimal at [Bw and highp, but
noticeably degrades performance at highand lowp.

For the 7-sensor hierarchy in Fig. 1, two thresholds must be
set. To meet the energy constraintin @)} 4Prr(1)4+2Prr(2).
Although 7; for ¢ € G can be set analytically to achieve a par-
ticular Prr(1), 7; for i € G2 must be set using the numeri-
cally calculated densityy 3 ;7,. Several combinations @ rr =
[Prr (1), Prr(2)] can be tested in order to maximiZ&, for a
given Pr. In Fig. 3, three combinations that meet= 0.1 are
tested in the feedback cas®rr = [0.05,0.2], [0.1,0.1], and
[0.12,0.06]. Atvery low Pr, itis best to sePpr (1) > Prr(2),
while at highPr, it is best to sePrr(1) < Prr(2). In this case,

IV -850



o
©

o
©

o©
3

P.,={0.12, 0.06}
- P..={0.10,0.10}
P.,= {0.05, 0.20}

)

o
3

Probability of Detection
o

©
~

N

Optimal 1-Sensor

o
w

0.05 0.1 0.15 0.2
Probability of False Alarm

Fig. 3. 7-sensor system with feedback and wjith= 0.10 for

various combinations aPrr (1) and Prr(2).
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Fig. 4. 7-sensor system with and without feedback for=
{0.30,0.10,0.03}. Prr(1) = Prr(2) = p for all three cases.

equal probability of false transmission on each level has very good
overall performance. Lettingrr (k) be equalk also ensures an
equal rate of energy consumption for all sensors in the network.
In Fig. 4, we plot the ROC results for both with and without
feedback cases whePkr (1) = Prr(2) = pis set to 0.30, 0.10,

or 0.03. Similar to the 3-sensor case, the feedback scheme results

in increasedPp at low Pr, but has significantly lowePp whenp
is small andPr is high.

4. CONCLUSION

In this paper, we have applied censoring sensors to a hierarchica[12]

framework. This framework will be increasingly important in the

design of energy-limited wireless sensor networks used for dis- [13]
tributed detection. We have shown in a Gaussian change-of-mean
detection example that close to optimal detection performance can

be achieved when sensors may only transmit a fraction of their

improve detection performance at loiR-. However, more gen-

eral use of feedback must be studied in order to determine the best
use of the mechanism. Furthermore, adapting the hierarchy of a
network should be considered for possible energy savings and re-
silience to sensor failures.
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