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ABSTRACT

In energy-limited wireless sensor networks, detection using ‘cen-
soring sensors’ reduces the probability that a sensor must transmit,
thereby saving energy. In this paper, we introduce a hierarchi-
cal distributed detection scheme designed specifically for multi-
hop networks. If a sensor’s local likelihood ratio (LLR) crosses
a threshold, it is sent to the next higher level sensor. A simple
feedback scheme is also considered. We study the performance of
a Gaussian change-of-mean detection system using this hierarchi-
cal censoring scheme, with and without feedback. We show that
good detection performance can be achieved while significantly
reducing sensor transmissions compared to the optimal detection
system.

1. INTRODUCTION

Large-scale wireless sensor networks are envisioned to monitor
wide environments without network management for long life-
times. Many example applications, such as temperature and VOC
monitoring in buildings, moisture and fertilizer level sensing in
agricultural fields, and detection of intruders across borders, in-
volve detection of events. Distributed detection using multiple
sensors has been studied extensively in the literature [1][2]. This
paper applies a distributed detection framework to wireless sensor
networks, which have the peculiarities of being energy-constrained
and multi-hop. We argue that these characteristics lead naturally
to a hierarchical topology and a “censoring sensors” [3] strategy.
We present analysis of censoring in a hierarchical topology and
suggest a simple feedback scheme. Finally, we show numerical
results for a Gaussian change-of-mean detection system with and
without the feedback scheme.

1.1. Energy Constraint

Energy is of primary concern in wireless sensor networks [4][5][6].
In most applications, the bit rate is very low, often less than one
bit per second [5], and the bandwidth is wide. IC costs will fall
with Moore’s law, however, battery costs will remain relatively
constant, thus energy will become an increasing fraction of the
sensor cost. Economical deployment of thousands of sensors will
require aggressive energy limitation. Equivalently, given a battery
size, minimizing energy consumption maximizes system lifetime.
If energy consumption can be sufficiently reduced, solar power or
energy-mining can be used to power each sensor [5].

This material is based in part upon work supported under a NSF Grad-
uate Research Fellowship.

Wireless sensor networks use low duty cycles, ie. low percent-
age of device ‘on’ time, on the order of 0.01% to 1%, allowing cir-
cuits to remain in a sleep state the vast majority of the time. When
necessary, a device wakes up its sensor, processor, transmitter or
receiver in order to sense, process, receive or transmit a message.
Each wake-up consumes significant energy. Specifically, for the
transmitter circuitry, it has been reported that there is a tradeoff
between the time required for (and thus energy expended during)
wake-up and the energy used during sleep mode [5]. Due to the
large percentage of time spent in sleep mode, sleep mode energy
is minimized, and as a result, wake-up energy is high. It has also
been reported that wake-up energy can be significantly higher than
the energy used during transmission [7].

Much distributed detection research has focused on capacity-
constrained networks. Research has addressed quantization of sen-
sor data [8] and exploiting source correlation [9] to reduce sensor
bit rate. In particular cases, it has been shown that for aR sensor
network with a capacity constraint ofR bits per unit time, having
each sensor send one bit is optimal [10].

However, from the perspective of energy, the cost of transmit-
ting one bit involves wake-up energy and packet overhead such as
synchronization and id bits. Considering all energy costs in an en-
ergy budget as in [6] shows that sending one bit of data consumes
only marginally less energy than sending several bits. In fact, it
can be argued that the appropriate constraint to bound energy con-
sumption for many wireless sensor networks is the probability of
transmission from each sensor, as used in [11]. In this paper, a
sensor’s decision regarding whether or not to transmit its data is a
local decision based on its LLR [3].

1.2. Hierarchical Networks

In wireless sensor networks, due to devices’ limited range, com-
munication to a fusion center must be routed through intermediate
devices in the network. Multi-hop is used for energy-efficiency
and reduced device cost. If required transmit power∝ 1/r2, where
r is the path length, then total transmit energy is decreased by us-
ing multiple short hops. Network-wide power savings in multi-
hop systems can be significant, especially for large-scale networks
when reception energy costs are small compared to transmission
costs. Technology scaling should reduce receiver energy consump-
tion, while transmission costs will remain constant [5]. This pro-
jection underscores the importance of both multi-hop and mini-
mizing the probability of transmission.

The use of multi-hop in wireless sensor networks can also be
exploited for improved detection performance. Often, distributed
detection literature assumes that all sensor data is sent to a fusion
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center. Rather than simply relaying messages to a fusion center, in-
termediate nodes can perform data aggregation and make local de-
cisions, preventing a bottleneck at the fusion center. Furthermore,
feedback has been suggested to enable sensors to make reliable
decisions on certain events [12]. In this paper, we consider a hier-
archical or ’spanning tree’ topology (eg., Fig. 1) for the purposes
of censoring and feedback.

We focus on the case where wireless sensor networks oper-
ate in weak signal environments, i.e.,P (H1) is low. HighP (H1)
applications are typically incompatible with low-duty cycle oper-
ation. Thus we constrain the average probability of sensor trans-
mission givenH0, and then optimize detection performance.

2. DERIVATION OF HIERARCHICAL CENSORING

In a hierarchical network ofN sensors, we denoteGk as the set of
sensors on levelk of the hierarchy,k = 1 . . .M (eg.,G2 = {3, 6}
in Fig. 1). Each sensor (except for the fusion center) has a parent
node. We denote the set of children of nodei asKi. At a given
round of sensing, a sensor records dataXi. We assumeXi are
i.i.d. conditional on the hypothesisHj , j = 0, 1.

Censoring sensors was presented in [3] and [13]. The hierar-
chical version presented here expands censoring to multiple layers
of sensors with feedback. Each sensor forms its LLRLF,i from
both its own dataXi and the LLRs of its children. TheF sub-
script denotes thatLF,i is a fusion of data not only from sensori
but also its children. IfLF,i falls in a send region,Ri, then sensor
i sends its LLR to its parent. Since the number of data bits is not
constrained, we can assume for analysis that the real-valued LLR
is sent to the parent unquantized [3]. If the LLR falls in the no-
send region,̄Ri, sensori doesn’t transmit, and its silence is used
as information by its parent. Define the constraintρ as the mean
probability of sensor transmission givenH0,

1

N − 1

NX
i=1

i�=F C

P0[LF,i ∈ Ri] ≤ ρ ≤ 1. (1)

Here,FC is the index of the highest level sensor (7 in Fig. 1). Its
false alarm rate is the globalPF that directly determines detection
performance, and is constrained independently of the energy con-
straint. In this paper we usePj to indicate the probability given
Hj , for j = {0, 1}.

In [3], the optimal censoring region was shown to be a single
interval, R̄ = [νi, τi). Moreover, in cases where the prior prob-
ability of H1 is sufficiently small and limited communication is
allowed, it is optimal to setν1 = 0. Sufficient conditions for the
optimality ofνi = 0 are given in [13]. In this analysis, we assume
νi = 0 because of the assumptions onP (H1) and limited trans-
mission probability detailed in Section 1. Thus the optimal fusion
rule for sensori’s decision whether or not to transmit is a local
likelihood ratio test (LLRT) with thresholdτi,

LF,i = Ll,i

Y
j∈κi

LF,j ×
Y

j∈κ̄i

cj

H1
>
<

H0

τi (2)

whereLl,i is the likelihood ratio based only on the dataXi, the
setsκi = {j ∈ Ki : LF,j ∈ Rj} and κ̄i = {j ∈ Ki : LF,j ∈
R̄j} are the subsets ofKi which send, and do not send their LLR,
respectively. Note that fori ∈ G1, LF,i = Ll,i since sensors on

level 1 have no children. The constantci is the effect on the LLR
of a non-transmitting child node,

ci =
P1(LF,i ∈ R̄i)

P0(LF,i ∈ R̄i)
. (3)

In terms of log-likelihoodslF,i = logLF,i andll,i = logLl,i,

lF,i = ll,i +
X
j∈κi

lF,j +
X
j∈κ̄i

log cj

H1
>
<

H0

log τi (4)

Let the density oflF,i and ll,i be given byfF,i andfl,i, respec-
tively. ThenfF,i can be seen as a mixture pdf. This is derived
explicitly for a binary tree in Section 2.2.

2.1. Using Feedback

In this paper, we test a simple feedback scheme in which a device
listens for transmissions from its ‘siblings’ (sensors with the same
parent). If one sibling transmits its LLR to the parent, then all
of the other siblings also transmit their LLRs to the parent. This
scheme doesn’t require the parent to transmit back to its children
to request feedback. Although feedback from the parent could in-
clude more information than feedback from a sibling, analyzing
this basic scheme helps to determine when feedback is valuable.

To achieve the same probability of transmission as without
feedback, the thresholdsτi of the LLRTs must be reduced. Eqs. (2)-
(4) are still valid, but now,̄κi = Ki if LF,j ∈ R̄j , ∀j ∈ Ki, or
κ̄i = ∅ otherwise. Similarly,κi = Ki ∩ (κ̄i)

C . If #{Ki} is the
number of children of sensori, the constraint becomes,

1

N − 1

NX
i=1

#{Ki}P0

h [
j∈Ki

LF,j ∈ Rj

i
≤ ρ ≤ 1, (5)

2.2. Binary Tree Simplification
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3-node case

root

children of {7}

children of {3, 6}

Fig. 1. Diagram of an example hierarchical network of sensors.
Subset of sensors{1, 2, 3} is also used as an example.

Assume thatN sensors are arranged in a binary tree as the
N = 7 case shown in Fig. 1. We simplify the parameter space by
assuming that the thresholds for sensors on levelk are identical.
We letPF T (k) be the probability of false transmission from a sen-
sor on levelk. Without feedback,PF T (k) = P0[LF,i ∈ Ri], for
anyi ∈ Gk. In the feedback case,PF T (k) = 1− (1−P0[LF,i ∈
Ri])

2, for anyi ∈ Gk. The constraint from (1) is now,

1

N − 1

M−1X
k=1

2M−kPF T (k) ≤ ρ ≤ 1. (6)

The density of sensori’s LLR givenHj can be shown to be,

fF,i|Hj
= ε0g0|Hj

+ ε1g1|Hj
+ ε2g2|Hj

, (7)
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whereεk is the probability thatk children of sensori have LLRs
in the send region, andgk|Hj

is the density of thelF,i givenHj

and givenk children have LLRs in the send region. The binomial
probabilityεk is,

εk =

 
2

k

!�
Pj(lF,u ∈ Ru)

�k�
Pj(lF,u ∈ R̄u)

�2−k
, (8)

whereu ∈ Ki. The densitiesgk|Hj
of (7) can be calculated via

convolution. DefiningSu = {lF,u ∈ Ru} and S̄u = {lF,u ∈
R̄u}, the densities offF,u conditioned onHj andSu or S̄u are,

fF,u|Hj,Su(t) =

(
fF,u|Hj

(t)

Pj(lF,u∈Ru)
t ∈ Ru

0 t ∈ R̄u

(9)

fF,u|Hj,S̄u
(t) =

(
0 t ∈ Ru

fF,u|Hj
(t)

Pj(lF,u∈R̄u)
t ∈ R̄u

(10)

In the case without feedback, the densitiesgk|Hj
(t) are,

g0|Hj
(t) = fl,i|Hj

(t− 2 log cu) (11)

g1|Hj
(t) = fl,i|Hj

(t− log cu) � fF,u|Hj,Su(t)

g2|Hj
(t) = fl,i|Hj

(t) � fF,u|Hj,Su(t) � fF,u|Hj,Su(t),

where� indicates convolution. Note thatg2|Hj
(t) is thefl,i|Hj

density convolved twice with the density in (9), since it represents
the density of the sum of sensori’s own LLR and the LLRs of two
children given both send their data.

In the feedback case, it can be shown that (11) holds except
thatg1|Hj

(t) is replaced by,

g1|Hj
(t) = fl,i|Hj

(t) � fF,u|Hj,Su(t) � fF,u|Hj,S̄u
(t). (12)

In this case,g1|Hj
(t) is thefl,i|Hj

density convolved with both
densities in (9) and (10) since it represents the density of the sum
of sensori’s own LLR and the LLRs of two children given exactly
one child with LLR in the send region. Derivations of analyti-
cal results for highN are complicated by multiple convolutions
with (9) and (10). Approximations exist for Gaussian data, but for
brevity, we report numerical results.

3. NUMERICAL RESULTS

Consider the Gaussian change-of-mean detection system,

H0 : Xi ∼ N (0, σ2)

H1 : Xi ∼ N (µ, σ2)
(13)

In this example, the log-likelihood for sensor dataXi,

ll,i =
µ

σ2
Xi − µ

2σ2
, (14)

is also Gaussian. In this section,µ = 1 andσ2 = 1 are used.
First, consider the 3-sensor hierarchy shown as a sub-tree in

Fig. 1. We set the thresholds on level 1 to achieve a given prob-
ability of false transmission for sensors 1 and 2,ρ = PF T (1).
We calculate via Matlab the densitiesgk|Hj

(t) by sampling the re-
quired densities in (11) and (12) and using numerical convolution.
The weightsεk are calcalated from (8), and then (7) is used to find
the densities of the LLR at sensor 3,fF,3|H0 andfF,3|H1 .
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Fig. 2. ROCs for 3-sensor example (a) without feedback and (b)
with feedback. Plots show the optimal 1 and 3-sensor ROC and
the hierarchical ROC forρ = 0.30, 0.15, 0.05, 0.02, and 0.01.

These densities are used to calculatePF and PD, and the
ROCs of the final decision are shown in Fig. 2 for cases with
and without feedback. Valuesρ = PF T (1) = 0.30, 0.15, 0.05,
0.02, and 0.01 are shown. Optimal 3-sensor and 1-sensor cases
are shown as bounds on the system performance. Note that with
ρ = 0.30, there is a 70% reduction in transmission underH0,
but the detection performance remains close to optimal, especially
at low PF . Even with the two level 1 sensors transmitting only
1/100 of the time, performance is significantly better than with
only one sensor. Comparing Figs. 2(a) and 2(b), feedback allows
performance closer to 3-sensor optimal at lowPF and highρ, but
noticeably degrades performance at highPF and lowρ.

For the 7-sensor hierarchy in Fig. 1, two thresholds must be
set. To meet the energy constraint in (6),ρ = 4PF T (1)+2PF T (2).
Although τi for i ∈ G1 can be set analytically to achieve a par-
ticular PF T (1), τi for i ∈ G2 must be set using the numeri-
cally calculated densityfF,3|H0 . Several combinations ofPF T =
[PF T (1), PF T (2)] can be tested in order to maximizePD for a
given PF . In Fig. 3, three combinations that meetρ = 0.1 are
tested in the feedback case:PF T = [0.05, 0.2], [0.1, 0.1], and
[0.12, 0.06]. At very lowPF , it is best to setPF T (1) > PF T (2),
while at highPF , it is best to setPF T (1) < PF T (2). In this case,
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Fig. 3. 7-sensor system with feedback and withρ = 0.10 for
various combinations ofPF T (1) andPF T (2).

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Probability of False Alarm

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

Optimal 7−Sensor
Optimal 1−Sensor
Hier. w/o FB    
Hier. w/ FB     

ρ = 0.3 

ρ = 0.1 

ρ = 0.03 

Fig. 4. 7-sensor system with and without feedback forρ =
{0.30, 0.10, 0.03}. PF T (1) = PF T (2) = ρ for all three cases.

equal probability of false transmission on each level has very good
overall performance. LettingPF T (k) be equal∀k also ensures an
equal rate of energy consumption for all sensors in the network.

In Fig. 4, we plot the ROC results for both with and without
feedback cases whenPF T (1) = PF T (2) = ρ is set to 0.30, 0.10,
or 0.03. Similar to the 3-sensor case, the feedback scheme results
in increasedPD at lowPF , but has significantly lowerPD whenρ
is small andPF is high.

4. CONCLUSION

In this paper, we have applied censoring sensors to a hierarchical
framework. This framework will be increasingly important in the
design of energy-limited wireless sensor networks used for dis-
tributed detection. We have shown in a Gaussian change-of-mean
detection example that close to optimal detection performance can
be achieved when sensors may only transmit a fraction of their
sensor data. We introduced a simple feedback scheme that can

improve detection performance at lowPF . However, more gen-
eral use of feedback must be studied in order to determine the best
use of the mechanism. Furthermore, adapting the hierarchy of a
network should be considered for possible energy savings and re-
silience to sensor failures.
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