
ON THE IMPORTANCE OF
EXACT SYNCHRONIZATION FOR DISTRIBUTED AUDIO SIGNAL PROCESSING

Rainer Lienhart ?, Igor Kozintsev ?, Stefan Wehr ??, Minerva Yeung ?

? Intel Corporation
Microprocessor Research, Intel Labs

3600 Juliette Lane, Santa Clara, CA 95052, USA
f Rainer.Lienhart, Igor.V.Kozintsev, Minerva.Yeung g@intel.com

?? University Erlangen-Nürnberg
Multimedia Communications and Signal Processing

Cauerstraße 7, 91058 Erlangen, Germany
Wehr@lnt.de

ABSTRACT

We propose a new paradigm for implementations of au-
dio array processing algorithms on a network of distributed
general-purpose computers. In contrast to currently exist-
ing DSP processor-based solutions, our approach offers new
possibilities for advanced array signal processing by en-
abling the usage of general-purpose computing platforms
with their superior computational and storage resources. We
demonstrate that synchronization of sensors is essential for
acoustic Blind Source Separation (BSS) algorithms, and we
propose a synchronization scheme that enables BSS on dis-
tributed, wirelessly networked computers and can easily be
implemented on existing hardware.

1. INTRODUCTION AND MOTIVATION

During the last years, significant progress was made in au-
dio array processing [1, 2]. It enabled affordable consumer
devices for hands-free acoustic human-machine interfaces
for, e.g., speech recognition, video/audio conferencing,
voice over IP, e.g [3]. The existing products are currently
dominated by dedicated ASIC/DSP hardware. The ratio-
nale behind DSP implementations is obvious: they guaran-
tee short latency, precise synchronization, dedicated com-
puting resources and interconnections between components.
However, there are also disadvantages of DSP-based im-
plementations such as their fixed functionality, consider-
able cost, geometrical constraints (on the placement of sen-
sors/actuators) and limited software development/debugg-
ing capabilities.
In this paper we demonstrate that audio array algorithms
can be implemented using an alternative architecture such
as distributed network of general-purpose computers (GPC)
with onboard sensors. Examples of such platforms are lap-
tops, PDAs, tablets, etc., with integrated audio and wire-
less networking capabilities. In contrast to DSP-based sys-
tems, GPCs are multifunctional, scalable and capable of
performing more complex computational tasks. However,
before these devices can be used for audio array process-

ing several problems need to be resolved. For example,
the lack of precise synchronization between wirelessly con-
nected computers is a serious issue for audio processing al-
gorithms where sometimes (as we show in this paper) the
sample time accuracy has to have a microsecond precision.
Besides synchronization other obstacles for using GPCs as
sensor/actuator nodes are variable latency of data process-
ing, non-guaranteed link bandwidth, and the need to share
computing/communication resources with other appli-
cations. It is currently quite challenging to implement ex-
isting array processing algorithms on GPCs, and we believe
that the solution in general would require significant mod-
ifications of both the GPCs and the array processing algo-
rithms. However in this paper, we show an example of an
implementation of array audio algorithms on existing dis-
tributed GPCs.
This work demonstrates how distributed GPCs can be ap-
plied to array signal processing using as example BSS. BSS
has already been proven feasible on a single computing plat-
form (see e.g., [4]). To the best of our knowledge BSS (and,
in fact, other array audio algorithms) has never been imple-
mented in a distributed computing environment as we pro-
pose in this paper. We demonstrate how BSS can be im-
plemented on real distributed computing platforms and how
the problem of sensor synchronization may be addressed.

2. PROBLEM AND PROPOSED APPROACH

2.1. BSS applications

BSS is an approach to solve the so-called cocktail party
problem: N speakers are recorded by M � N microphones
(Fig. 3). Each microphone signal is a mixture of non-
stationary and reverberated signals. Furthermore, speaker
and microphone positions are generally unknown.
Several applications require to separate source signals from
the mixture. Examples include hearing aids, speech recog-
nition, and teleconference systems where we may want to
focus on a particular speaker only. Current BSS applica-
tions implicitly assume recording by a single multichan-

IV - 8400-7803-7663-3/03/$17.00 ©2003 IEEE ICASSP 2003

➠ ➡

nel audio device (with synchronized sampling in all chan-
nels). Our goal, however, is to use the built-in microphones
of several distributed GPCs to record audio signals. Such
distributed setup leads to a severe problem: The sampling
rates of different audio devices do not exactly match each
other anymore. This leads to significant degradation of the
performance 1. Figure 1 shows the effect of sampling rate
differences in a two-speaker/two-microphone setting on the
performance of the BSS. Even a 1 Hz sampling frequency
offset results in a 5 dB performance loss.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

8

9

10

Sampling rate difference [Hz]

A
ve

ra
ge

 g
ai

n
[d

B
]

Fig. 1. Sensitivity of BSS to sampling rate differences.
Even a 1 Hz sampling frequency offset results in a 5 dB
performance loss.

Due to this high algorithm sensitivity to sampling rate de-
viations, synchronization is essential for distributed signal
processing. We solve this problem by distributing common
clock information to all devices as described in 2.2. Every
laptop (or PDA) recovers the sync signal and realigns au-
dio samples from different sensors. Synchronized signals
are then processed in the computer (outside or inside the
”audio-recording-network”) to perform BSS.

2.2. BSS on distributed platforms

The BSS algorithm is highly sensitive to small differences
in sample frequency as demonstrated in Figure 1. Differ-
ences in sample frequency, however, are unavoidable on dis-
tributed platforms and must therefore be (locally) corrected
before applying BSS.
In our synchronization solution we assume that audio chan-
nels on the same I/O device (e.g., PCMCIA card, inter-
nal multichannel ADC) are synchronized and in abundance
available on future computing platforms (e.g., 4 to 8 audio

1In this work we use our implementations of BSS presented in [4, 5].

inputs). The main idea of our novel synchronization scheme
is to ’misuse’ a single audio channel for distributing global
synchronization information. Synchronization signals are
formed in a master unit using its own clock to modulate an
audio carrier signal. The carrier signal can be chosen from
many possible types. We use Maximum Length Sequences
(MLS, [6]) because of their good autocorrelation charac-
teristics. The synchronization signals are delivered to the
distributed computing platform using dedicated links with
small stable latency 2 such as wireless RF channels. In our
case, a simple FM radio transmitter and multiple receivers
are used to analog modulate/demodulate the audio sync sig-
nals.
Using an RF channel for distribution of the audio sync sig-
nals rather than air is a critical component of our synchro-
nization scheme. If the sync signals are sent through the air,
synchronization cannot be achieved due to the significant
difference in propagation time. Additionally, synchroniza-
tion signals will interfere with the audio scene and degrade
the recording quality. Our solution, however, requires an
additional audio input channel dedicated solely to the audio
sync (timestamp) signal. Since the sync signals are pro-
cessed in dedicated circuits and delivered by electromag-
netic waves, propagation time is small and almost constant.
Figure 2 illustrates our setup. One GPC distribute the MLS

M

�
�
�
�

��

Rx

Rx

��

�
�
�
�

��

Tx

��

�
�
�
�

��

L

R

L

R

Lap 1

Lap M

Sync

M laptopsN sources BSS

1

��

Fig. 2. Setup of distributed BSS platform

sync signal with modulated sequence numbers via the RF
channel (Tx). These MLS sequences are received at each
distributed GPC, demodulated to audio, and are fed into
dedicated audio channel, while the respective microphone
signal (mono) is captured on another audio channel. After
processing the sync audio track (we use a simple correlation
receiver to determine the start of each MLS), we can deter-
mine the locations of timestamps and perform sampling rate
conversion. Fortunately, all operations can be performed lo-
cally, and therefore our synchronization scheme scales well

2Note that we only need a relative synchronization of all the inputs.
Low latency is desired but not always required.

IV - 841

➡ ➡

with the number of computing platforms and microphones.
Finally, preprocessed audio tracks are delivered to the com-
puting platform to perform BSS.

3. EXPERIMENTAL RESULTS

For our experiments, we implemented two BSS approaches,
published by Lucas Parra and others [4, 5], as real-time sys-
tems. Two different cost functions are incorporated in [4]
and [5], which are denoted as J1 and J2 in this work.
Figure 3 gives an overview of BSS. A(k) captures room
impulse responses aji(k) between source signal si(k) and
microphone signal xj(k). W(k) consists of filters wlj(k)
between microphone signal xj(k) and estimated source sig-
nal ŝi(l). In contrast to [4] and [5], we compute the signal

��
��
�
�
�
�����

����
��
��
��
����

��
�
�
�
�

reverberant
environment BSSmicrophones

MN
sources

N
estimated
sources

A(k) W(k)
s1(k)

sN(k)

ŝ1(k)

ŝN(k)

x1(k)

xM(k)

Fig. 3. Block diagram of the BSS problem with mixing
matrixA(k) and unmixing matrixW(k).

to interference ratio (SIR) as follows:

SIRin;i(k) = 10 log10

2
664

cov
n
ysi;mi

(k)
o

cov
nP

l6=i

ysl;mi
(k)
o

3
775 (1)

SIRout;i(k) = 10 log
10

2
664

cov
nP

j

ysi;mj ;ŝi(k)
o

cov
nP

l6=i

P
j

ysl;mj;ŝi(k)
o

3
775 (2)

In both equations, the numerator consists of the desired sig-
nal si(k) and the denominator of all interfering signals s l(k)
(l 6= i). ysi;mj

(k) = si(k) � aji(k) represents source i

recorded by microphone j. Accordingly, y si;mj ;ŝl(k) =
si(k)�aji(k)�wlj(k) represents the contribution of source
i, recorded by microphone j, to estimated source l. Com-
paring the input and output SIR, we obtain the gain due to
BSS in dB:

Gaini(k) = SIRout;i(k)� SIRin;i(k) (3)

A top view of the simulation setup is depicted in figure 4.
The microphones and loudspeakers were set up in a sound-
control chamber (with short room impulse response and low
noise level). In order to minimize background noise, we

placed playback and recording devices outside of the cham-
ber. Two studio loudspeakers (Mackie HR624) were set up
in front of a distributed microphone array. Four directional
microphones were arranged quadratically and they pointed
towards the loudspeakers. Source signals were played back
by a PCI sound card (SoundBlaster Live!). In all experi-
ments, the amplified microphone signals were recorded at a
sampling rate of 44.1 kHz. Subsequently, we converted the
recordings to the sampling rate of our on-line BSS imple-
mentations (16 kHz). Two sets of audio data were processed

1 3

42

2.54m

4.22m

1.15m

1.70m

0.50m

0.50m

Fig. 4. Simulation setup (top view)

in our experiments:
Set 1 was created from a fairy tale. The narrator corresponds
to source one and the actors to source two. Set 2 is based on
an interview. Host and guests represent the source signals.

� Experiment 1: Fully synchronized data.
In contrast to experiment 2 and 3, the microphone sig-
nals were recorded by one sound card (RME
DIGI9652). One common internal clock controls the
sampling rate, which is therefore identical for all mi-
crophones.

� Experiment 2: No synchronization.
We recorded the microphone signals as well as the
synchronization signal with the internal sound cards
of four different laptops (Tab. 1). Synchronization
signals were only used to find the common start posi-
tion for all audio tracks.

� Experiment 3: Proposed synchronization model.
In addition to experiment 2, we use the synchroniza-
tion signal to align all the samples in the recorded
signals.

Table 2 presents the average gain obtained due to BSS as
a function of the choice of cost function, synchronization
scheme, input audio signals, and the number of microphones.
Experiment two clearly indicates that synchronization is an
essential part in the (given) BSS methods. The performance
of the BSS drops down significantly when compared to the

IV - 842

➡ ➡

Mic Laptop and sampling rate

1 Dell Inspiron 7000 16001.7 Hz
2 IBM ThinkPad T20 16003.6 Hz
3 IBM ThinkPad 600E 16001.8 Hz
4 IBM ThinkPad T23 16009.5 Hz

Table 1. Recording devices and their corresponding sam-
pling frequencies.

fully synchronized case. Our synchronization proposal ad-
dresses this issue.
We also found that for the case of two and three micro-
phones and fully synchronized sampling, BSS based on cost
function J2 outperforms J1-based BSS. J2-based BSS falls
lightly behind J1-based BSS for four microphones. If data
is not synchronized,J1-based BSS show better performance.
In experiment three, both BSS approaches yield similar
gains.
An increased number of microphones improves BSS perfor-
mance in the fully synchronized case. (Exception: Tab. 2d,
three and four microphones) This additional gain vanishes
if data is not synchronized. Using signals ’Interview’, the
gain may actually drop when more channels are used for
the processing and the synchronization is not exact.

4. DISCUSSION AND CONCLUSION

Currently, array signal processing algorithms are restricted
to single computing platform scenario. In this work we
demonstrated how to distribute signal recording and pro-
cessing to a network of general purpose computing devices,
and examined the problem of sensor synchronization that
arises in this case. Our synchronization method reduces the
effects of different sampling rates. Further improvements of
the proposed scheme are needed to obtain the best possible
performance.

5. ACKNOWLEDGMENT

We would like to thank W. Herbordt and W. Kellermann
from the Multimedia Communications and Signal Process-
ing department (University Erlangen-Nürnberg) for valu-
able discussions while preparing this paper.

6. REFERENCES

[1] M. Brandstein, D. Ward: Microphone Arrays,
Springer Verlag, Berlin, May 2001.

[2] S. L. Gay, J. Benesty: Acoustic Signal Processing
for Telecommunication, Kluwer Academic Publishers,
March 2000.

Number of microphones

Experiment 2 3 4

1: full sync 3.86 dB 5.29 dB 5.77 dB
2: no sync 1.58 dB 1.84 dB 1.84 dB
3: our sync 2.28 dB 2.69 dB 2.94 dB

(a) Fairy tale, Cost function J1

Number of microphones

Experiment 2 3 4

1: full sync 4.88 dB 5.61 dB 5.76 dB
2: no sync 1.48 dB 1.61 dB 1.62 dB
3: our sync 2.33 dB 2.58 dB 2.75 dB

(b) Fairy tale, Cost function J2

Number of microphones

Experiment 2 3 4

1: full sync 5.05 dB 6.90 dB 7.50 dB
2: no sync 2.75 dB 2.41 dB 2.35 dB
3: our sync 3.42 dB 3.25 dB 3.88 dB

(c) Interview, Cost function J1

Number of microphones

Experiment 2 3 4

1: full sync 6.32 dB 7.33 dB 7.26 dB
2: no sync 1.93 dB 1.90 dB 1.88 dB
3: our sync 3.50 dB 3.45 dB 3.76 dB

(d) Interview, Cost function J2

Table 2. Experimental results

[3] W. Herbordt, W. Kellermann: Frequency-Domain In-
tegration of Acoustic Echo Cancellation and a Gen-
eralized Sidelobe Canceller with Improved Robust-
ness, European Transactions on Telecommunications
(ETT), vol. 13, no. 2, pages 123-132, March 2002.

[4] L. Parra, C. Spence: On-line Blind Source Separa-
tion of Non-Stationary Signals, Journal of VLSI Sig-
nal Processing, vol. 26, no. 1/2, pp. 39-46, August
2000.

[5] C. L. Fancourt, L. Parra: The coherence function
in blind source separation of convolutive mixtures of
non-stationary signals, IEEE International Workshop
on Neural Networks and Signal Processing, 2001.

[6] D. D. Rife, J. Vanderkooy: Transfer-Function Mea-
surement with Maximum-Length Sequences, J. Audio
Eng. Soc., vol. 37, no. 6, June 1989.

IV - 843

➡ ➠

